scholarly journals Simulation Model of Bottom Hole Dynamic Pressure and Reservoir Dynamic Stress in Hydraulic Fracturing with Pulse Injection

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ge Zhu ◽  
Shimin Dong

To study the mechanism of hydraulic fracturing with pulse injection theoretically, in this paper, the transient flow model of fracturing fluid in the pipe string was established, and it was solved by method of characteristics and finite difference method, respectively. Furthermore, the elastodynamic model of reservoir was also established. Based on the finite element method, the dynamic stress distribution in the reservoir was simulated and calculated. In addition, the influence of parameters in the pulse injection scheme on dynamic stress was analyzed. The results indicate that the unsteady injection produces a pulse pressure wave at the wellhead. The pressure wave propagates along the pipe string to the bottom of the well, and its amplitude attenuates due to the resistance loss. When the pressure wave propagates to the bottom of the well, it will be reflected and there is a superposition area of the downward pressure wave and upward reflection wave near the bottom hole. The bottom hole pressure of pulse injection is the sum of stable injection pressure and the above pressure wave. Simultaneously, this fluid pressure with pulse variation will stimulate reservoir to produce dynamic stress in its interior. The pulse adjustment time and adjustment amplitude in the injection scheme have a significant impact on the dynamic stress. The results of this paper are helpful to understand the mechanism of hydraulic fracturing with pulse fluid injection and provide guidance for its parameter design.

1990 ◽  
Vol 112 (3) ◽  
pp. 284-290 ◽  
Author(s):  
D. D. Budny ◽  
F. J. Hatfield ◽  
D. C. Wiggert

The traditional approach to designing a piping system subject to internal dynamic pressure is to restrain the piping as much as possible, and the approximation made in the analysis is to assume no contribution of structural energy dissipation. To determine the validity of this concept and approximation, an experimental study of a piping system was performed to measure the influence of structural damping. A pipe system was designed with a loop that could be turned so that its natural frequency would match that of the contained liquid. It was discovered that a properly sized damper on the piping loop greatly accelerates the decay of the fluid pressure transient. The damper absorbs some energy from the piping, reducing the resulting rebound fluid pressure. When the loop is subjected to forced steady-state vibration, there is a fluid pressure response. The amplitude of that pressure can be reduced by installing an external damper: the stiffer the damper the more effective it is in reducing dynamic pressure.


Author(s):  
Marco Ganser ◽  
Ulrich Moser

The basic physical law governing the injection in Common Rail Systems is the compressibility of the fuel. The effects of pressure wave dynamics, the layout of the system volume and its geometrical distribution strongly affect the injection events at every injector. In this Paper, three different arrangements of system volumes and their effect upon the performance of the individual injectors are compared using the hydraulics simulation tool AMESim. Two systems are known in the passenger car and the heavy duty diesel engine domains. The third system is new and takes advantage of pressure wave dynamics to tailor the injection event. This system is best suited for Diesel Engines with a power from 1 to 5 MW, as used in locomotives, ships, power generation and heavy earthmoving machinery. It produces a more favorable pattern of the injection pressure and injection rate shape during any injection event by hydraulically interconnecting the individual injector’s accumulators during the injection and taking advantage of pressure wave dynamics. Right after the end of each injection, dynamic pressure pulsations are evened out with a dampening device. A multi-cylinder system provides equal conditions for all injections. Its very simple design and increased performance makes the novel system of very attractive use in the above mentioned fields.


2020 ◽  
Author(s):  
Magnus Wangen

<p>We present a 3D numerical model for hydraulic fracturing and damage of low permeable rock in an anisotropic stress field. The 3D numerical model computes the intermittent damage propagation, microseismic event-locations, microseismic event-distribution, damaged rock volume, and injection pressure. The model builds on concepts from invasion percolation theory, where cells in a regular grid are connected by transmissibilities, also called bonds. A numerical pressure solution provides the pressure in each cell at each time step during the hydraulic fracturing operation. The numerical solution is based on a cell-centered finite volume scheme. A fast version of the numerical scheme is suggested by restricting fluid flow to the damaged rock volume. The hydraulic fracture and the damaged rock volume propagate by one cell when a bond breaks. An intact bond breaks when the fluid pressure exceeds the least compressive stress and a random uniformly distributed bond strength. The model is different from a pure invasion percolation model by using the fluid pressure in combination with a random bond strength to decide which bond to break, instead of only the random strength. The volume of damaged rock is estimated with a simple expression for cases with high permeability of the damaged rock volume. The model is tested with a published case from the Barnett Shale. It reproduces the observed main features of the Barnett case, such as the spatial and temporal distribution of the events, the magnitude – frequency distribution and the injection pressure. It is found that the microseismic event-distribution and the b-value depend on the permeability of the damaged rock volume. The b-value increases with decreasing permeability from 0.6 to a value above 2 for the maximum possible permeabilities. The damaged rock volume is non-compact and similar to a percolation cluster for ‘‘high’’ damaged rock permeabilities, and it becomes increasingly compact with decreasing permeabilities. The resulting loop-less fracture network is found to have similar characteristics for different damaged rock permeabilities.</p>


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. O39-O55 ◽  
Author(s):  
Alessio Rucci ◽  
D. W. Vasco ◽  
Fabrizio Novali

Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based on these changes, we have estimated diffusive traveltimes associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage of the approach based on traveltimes, as opposed to one based on the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. The formulation has been applied to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is found to be approximately [Formula: see text], overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly spaced images of range change, we have calculated the diffusive traveltimes associated with the startup of a gas production well. The inequality constraints were incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30% to 40%.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 633
Author(s):  
Guangzhi Yang ◽  
Shicheng Zhang ◽  
Jia Wang ◽  
Ning Li ◽  
Xinfang Ma ◽  
...  

Exploring engineering methods for increasing fracture network complexity is important for the development of unconventional oil and gas reservoirs. In this study, we conducted a series of fracturing experiments on naturally fractured volcanic samples. An injection method, multiple flow pulses, is proposed to increase fracture complexity. The results show that fluid leaked into the natural fracture network (NFN) when the injection rate was low (0.2 mL/min); hydraulic-fracture-dominant fracture geometry was created with an injection rate of 2 and 5 mL/min. Under the 2 mL/min-injection scheme with 3 pulses, the injection pressure during the intermittent stage was low (<5 MPa), resulting in a limited increase in fracture complexity. When the number of the flow pulses increased to 5, the pressure drop rate in the fourth and fifth intermittent stage significantly increased, indicating an increase in the aperture of natural fractures (NFs) and in the fluid leak-off effect. Under the 5 mL/min injection scheme containing 5 pulses, besides the enhanced fluid leak-off, a sharp injection pressure drop was observed, indicating the activation of NFs. The complexity and the aperture of the ultimate fracture network further increased. The injection method, multiple flow pulses, can be used to create complex fracture networks effectively.


2000 ◽  
Vol 123 (2) ◽  
pp. 418-428 ◽  
Author(s):  
Mark P. Wernet ◽  
Michelle M. Bright ◽  
Gary J. Skoch

Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in high-speed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.


1967 ◽  
Vol 7 (03) ◽  
pp. 310-318 ◽  
Author(s):  
Bezalel Haimson ◽  
Charles Fairhurst

Abstract A criterion is proposed for the initiation of vertical hydraulic fracturing taking into consideration the three stress fields around the wellbore. These fields arise fromnonhydrostatic regional stresses in earththe difference between the fluid pressure in the wellbore and the formation fluid pressure andthe radial fluid flow through porous rock from the wellbore into the formation due to this pressure difference. The wellbore fluid pressure required to initiate a fracture (assuming elastic rock and a smooth wellbore wall) is a function o/ the porous elastic constants of the rock, the two unequal horizontal principal regional caresses, the tensile strength of the rock and the formation fluid pressure. A constant injection rate will extend the fracture to a point where equilibrium is reached and then, to keep the fracture open, the pressure required is a function of the porous elastic constants of the rock, the component of the regional stress normal to the plane of the fracture, the formation fluid pressure and the dimensions of the crack. The same expression may also be used to estimate the vertical fracture width, provided all other variables are known. The derived equations for the initiation and extension pressures in vertical fracturing may be employed to solve for the two horizontal, regional, principal stresses in the rock. Introduction Well stimulation by hydraulic fracturing is a common practice today in the petroleum industry. However, this stimulation process is not a guaranteed success; hence, the deep interest shown by the petroleum companies in better 'understanding the mechanism that brings about rock fracturing, fracture extension and productivity increase. Geologists and mining people became interested in hydraulic fracturing from a different point of view: the method may possibly be employed to determine the magnitude and direction of the principal stresses of great depth. Numerous articles in past years have dealt with the theory of hydraulic fracturing, but they all seem to underestimate the effect of stresses around the wellbore due to penetration of some of the injected fluid into the porous formation. Excellent papers on stresses in porous materials due to fluid flow have been published but no real attempt has been made to show the effect of these stresses in the form of a more complete criterion for vertical hydraulic fracturing initiation and extension. This paper is such an attempt. ASSUMPTIONS It is assumed that rock in the oil-bearing formation is elastic, porous, isotropic and homogeneous. The formation is under a nonhydrostatic state of regional stress with one of the principal regional stresses acting parallel to the vertical axis of the wellbore. This assumption is justified in areas where rock formations do not dip at steep angles and where the surface of the earth is relatively flat. This vertical principal regional stress equals the pressure of the overlying rock, i.e. S33= -pD where S33 is the total vertical principal stress (positive for tension), p is average density of the overlying material and D is the depth of the point where S 33 is calculated. The wellbore wall in the formation is considered to be smooth and circular in cross-section. The fluid flow through the porous elastic rock obeys Darcy's law. The whole medium is looked upon as an infinitely long cylinder with its axis along the axis of the wellbore. The radius of the cylinder is also very large. Over the range of depth at which the oil-bearing formation occurs, it will be assumed that any horizontal cross-section of the cylinder is subjected to the same stress distribution, and likewise that it will deform in the same manner. SPEJ P. 310ˆ


2018 ◽  
Vol 115 (8) ◽  
pp. E1720-E1729 ◽  
Author(s):  
Maria Kozłowska ◽  
Michael R. Brudzinski ◽  
Paul Friberg ◽  
Robert J. Skoumal ◽  
Nicholas D. Baxter ◽  
...  

Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values < 1, and many post–shut-in earthquakes, versus (ii) shallower earthquakes in Paleozoic rocks ∼400 m below HF, with smaller magnitudes (M < 1), b-values > 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.


Sign in / Sign up

Export Citation Format

Share Document