scholarly journals Artificial-Noise-Aided Energy-Efficient Secure Multibeam Wireless Communication Schemes Based on Frequency Diverse Array

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jianbang Gao ◽  
Zhaohui Yuan ◽  
Jing Zhou ◽  
Bin Qiu

In this paper, we research synthesis scheme for secure wireless communication in multibeam directional modulation (MBDM) system, which consists of multiple legitimate users (LUs) receiving their own individual confidential messages, respectively, and multiple eavesdroppers (Eves) intercepting confidential messages. We propose a new type of array antennas, termed frequency diverse arrays (FDA), to enhance security of confidential messages. Leveraging FDA technology and artificial noise (AN) technology, we aim to address the PHY security problem for MBDM by jointly optimizing the frequency offsets, the precoding matrix and the AN projection matrix. In the first stage, with known locations of Eves, precoding matrix is designed to minimize Eve’s receiving power of confidential message (Min-ERP), while satisfying power requirement of LUs. And then artificial-noise projection matrix (ANPM) is calculated to enhance AN impact on Eves without influencing LUs. Furthermore, we research a more practical scenario, where locations of Eves are unknown. Unlike the scenario of the known locations of Eves, precoding matrix is designed to maximize AN transmit power (Max-ATP), while satisfying each LU’s requirement received power of confidential message. In the second stage, we analyze and further optimize secrecy capacity. The problem is solved by optimizing frequency offsets through modified artificial bee colony (M-ABC) algorithm. Numerical results show that the proposed scheme can achieve a secure transmission in MBDM system.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianbang Gao ◽  
Zhaohui Yuan ◽  
Bin Qiu ◽  
Jing Zhou

In this paper, we research a synthesis scheme for secure wireless communication in the broadcasting multiusers directional modulation system, which consists of multiple legitimate users (LUs) receiving the same confidential messages and multiple eavesdroppers (Eves) intercepting the confidential messages. We propose a new type of array antennas, termed random frequency diverse arrays (RFDA), to enhance the security of confidential messages due to its angle-range dependent beam patterns. Based on RFDA, we put forward a synthesis scheme to achieve multiobjective secure wireless communication. First, with known locations of Eves, the beamforming vector is designed to minimize Eves’ receiving power of confidential message (Min-ERP) while satisfying the power requirement of LUs. Furthermore, we research a more practical scenario, where locations of Eves are unknown. Unlike the scenario of known locations of Eves, the beamforming vector is designed to maximize the sum received power of LUs (Max-LRP) while satisfying a minimum received power constraint at each LU. Second, the artificial-noise projection matrix (ANPM) is calculated to reduce artificial-noise (AN) impact on LUs and enhance the interference on Eves. Numerical results verify the superior secure performance of the proposed schemes in the broadcasting multiusers system.


Author(s):  
Yong Jin ◽  
Zhentao Hu ◽  
Dongdong Xie ◽  
Guodong Wu ◽  
Lin Zhou

AbstractAiming at high energy consumption and information security problem in the simultaneous wireless information and power transfer (SWIPT) multi-user wiretap network, we propose a user-aided cooperative non-orthogonal multiple access (NOMA) physical layer security transmission scheme to minimize base station (BS) transmitted power in this paper. In this scheme, the user near from BS is adopted as a friendly relay to improve performance of user far from BS. An energy harvesting (EH) technology-based SWIPT is employed at the near user to collect energy which can be used at cooperative stage. Since eavesdropper in the downlink of NOMA system may use successive interference cancellation (SIC) technology to obtain the secrecy information of receiver, to tackle this problem, artificial noise (AN) is used at the BS to enhance security performance of secrecy information. Moreover, semidefinite relaxation (SDR) method and successive convex approximation (SCA) technique are combined to solve the above non-convex problem. Simulation results show that in comparison with other methods, our method can effectively reduce the transmitted power of the BS on the constraints of a certain level of the secrecy rates of two users.


2016 ◽  
Vol 12 (02) ◽  
pp. 20
Author(s):  
Haifeng Lin ◽  
Ruili Mao

The accumulator can store the energy in high capacity, and the super capacitor can charge and discharge in high power. The mixed power source composed by the accumulator and super capacitor not only has the characteristics for both of them but also meets the high-power requirement of high capacity and peak value. How to perform the equalizing charging for multiple power packs is a emphasis in the industry currently. On the basis of analysis for multiple equalizing charging methods, a new type of design scheme based on DC/DC and switch matrix is raised in this project, the thinking of intermittent charging mode is adopted and four BCAP0350 is served as the charging sample to perform the charging and discharging experiment as well as verify the composite charging design scheme is provided with the feasibility.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Gaojian Huang ◽  
Yuan Ding ◽  
Vincent Fusco ◽  
Shan Ouyang

In this paper, we propose a new architecture and provide performance analysis for frequency diverse array (FDA) Radar combined with the index modulation (IM) techniques. Here, the IM concept is applied upon frequency offsets in an FDA. Information is transmitted by a dynamically selected subset of antenna element indices applying predefined carrier frequency offsets, which generate different radiation patterns. It is shown that this enables the capability for simultaneous wireless communication and FDA Radar that has the range-angle coupling issue resolved.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jian Xie ◽  
Bin Qiu ◽  
Qiuping Wang ◽  
Jiaqing Qu

Frequency diverse array- (FDA-) based directional modulation (DM) is a promising technique for physical layer security, due to its angle-range dependent transmit beampattern. However, the existing schemes are not suitable for the broadcasting scenario, where there are multiple legitimate users (LUs) to receive the confidential message. In this paper, we propose a novel random frequency diverse array- (RFDA-) based DM scheme to realize the point to multi-point broadcasting secure transmission in both angle and range dimension. In the first stage, the beamforming vector is designed to maximize the artificial noise (AN) power, while satisfying the power requirement of LUs for transmitting the confidential message simultaneously. In the second stage, the AN projection matrix is obtained by maximizing signal-to-interference-plus-noise ratio (SINR) at the LUs. The proposed scheme only broadcasts the confidential message to the locations of LUs while the other regions are covered by AN, which promotes the security of the wireless broadcasting system. Moreover, it is energy efficient since the power of each LU is under accurate control. Numerical simulations are presented to validate the performance of the proposed scheme.


2004 ◽  
Vol 36 (04) ◽  
pp. 987-995 ◽  
Author(s):  
Jan Hansen ◽  
Matthias Reitzner

In a convex domain K in ℝ d , a transmitter and a receiver are placed at random according to the uniform distribution. The statistics of the power received by the receiver is an important quantity for the design of wireless communication systems. Bounds for the moments of the received power are given, which depend only on the volume and the surface area of the convex domain.


2012 ◽  
Vol 452-453 ◽  
pp. 1240-1245
Author(s):  
Qi Liu

From several basic structures for indoor computer wireless communication system, a new type of system structure was designed. Its conformation of optics system and achievement by module were described particularly through using Fresnel lens system. This system’s link could be transformed between directed LOS link and non-directed LOS link, which made the system communicate at a high-speed when there were no barriers between the emitter and receiver and keep a good convexity when barriers appeared. At last what should be noted for the analogue simulation was brought up.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yan Song ◽  
Lidong Huang ◽  
Panfeng Xu ◽  
Lili Li ◽  
Min Song ◽  
...  

Video streaming communication networks will be a very important way to send multimedia information anytime and anywhere, and the construction of the network base station which transmits signals is crucial in future. However, there is a contradiction between the power consumption of LoRa nodes and the real-timeliness of mesh network. In order to solve the contradiction, this article aims to combine the mesh network of LoRa wireless communication system with an improved artificial bee colony algorithm. Specifically, an artificial bee colony algorithm, which is based on RBF radial basis neural network trained with random gradient method, is designed. Simulation results show that the proposed algorithm solves the contradiction between power consumption and real-timeliness effectively. When using this improved network system structure to send multimedia information, it shows obvious superiority in terms of the high efficiency and real-timeliness of multimedia transmission.


Sign in / Sign up

Export Citation Format

Share Document