scholarly journals In Vivo Confocal Microscopy Observation of Cell and Nerve Density in Different Corneal Regions with Monocular Pterygium

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yun-Zhi Shen ◽  
Mi Xu ◽  
Song Sun

Purpose. To investigate the effects of pterygium on corneal cell and nerve density in patients with unilateral pterygium using in vivo laser scanning confocal microscopy (LSCM). Methods. In this cross-sectional study, 24 patients with unilateral pterygium who were treated in the Department of Ophthalmology of the Second People’s Hospital of Wuxi City from April 2018 to July 2018 were analyzed. Each eye with pterygium and its fellow eye were imaged by LSCM. The density of basal corneal epithelial cells, anterior stromal cells, posterior stromal cells, dendritic cells, and endothelial cells in pterygium and adjacent clear cornea was measured. In the fellow eyes, the central cornea, nasal cornea, nasal mid-peripheral cornea, and temporal cornea were imaged. The difference in the density of cells and subepithelial nerve fibers in different corneal regions of eyes with pterygium was analyzed. The cell and nerve density of the fellow cornea were also measured to exclude the influencing factors. Results. The density of corneal basal epithelial cells in the central corneas of eyes with pterygium was 6497 ± 1776 cells/mm2, which was higher than that in the area near the head of pterygium (5580 ± 1294 cells/mm2, P<0.001), the region above pterygium (6097 ± 1281 cells/mm2, P=0.049), and the region below pterygium (5463 ± 1007 cells/mm2, P=0.001). The density of anterior stromal cells in the central cornea was 742 ± 243 cells/mm2, which was higher than that in the area near the head of pterygium (587 ± 189 cells/mm2, P=0.005), the region below pterygium (492 ± 159 cells/mm2, P=0.005), and the temporal cornea (574 ± 164 cells/mm2, P=0.003). The density of endothelial cells in the central cornea was 2398 ± 260 cells/mm2, which was higher than that in the area near the head of pterygium (2296 ± 231 cells/mm2, P=0.011) and the region below pterygium (2272 ± 400 cells/mm2, P=0.020). The density of dendritic cells in the central cornea was 53 ± 48 cells/mm2, which was lower than that in the area near the head of pterygium (250 ± 224 cells/mm2, P=0.001), the upper region (103 ± 47 cells/mm2, P=0.006), and the lower region (90 ± 48 cells/mm2, P=0.023). The corneal nerve fiber length (CNFL) in the center was higher than that in the area near the head of pterygium, the upper region, and the lower region. Compared with fellow eyes, eyes with pterygium had a significantly higher mean corneal power (KM) (P<0.001). There was a significant positive linear relationship between the corneal area invaded by pterygium of pterygia and KM (r = 0.609, P=0.009). Conclusion. Basal epithelial cells, stromal cells, endothelial cells, dendritic cells, and subepithelial nerve fibers in the central cornea of eyes with pterygium were different from those of pterygium and adjacent clear cornea. LSCM is effective for observing the morphology and quantity of corneal cells in pterygium.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ting Chen ◽  
Qiangxiang Li ◽  
Xiangbo Tang ◽  
Min Liao ◽  
Hua Wang

This study was aimed at observing the morphological changes of the cornea with ocular in vivo confocal microscopy (IVCM) in patients with Terrien’s marginal degeneration (TMD). Ten patients (20 eyes) with TMD treated in the Department of Ophthalmology, Xiangya Hospital, and 10 healthy controls (20 eyes) were included in the current study. A detailed slit lamp microscopy, anterior segment photography, and corneal IVCM examination were performed for each eye. The density of central and marginal corneal epithelial cells, stromal cells, and subepithelial nerve fibers was compared between the two groups using the Wilcoxon rank sum test. Compared with the control group, the corneal epithelial and endothelial cells in the TMD group showed granular highly reflective substances and thinner subepithelial nerve fibers. The uneven dot-like highly reflective substances without cell structures appeared in the stromal layer of the cornea. The density of central and marginal corneal epithelial cells, stromal cells, and subepithelial nerve fibers was lower in the TMD group (p<0.05), and they were negatively correlated with severity of the disease (p<0.05). Our study demonstrated that the density of corneal epithelial cells, stromal cells, and sensory plexus nerve fibers was significantly reduced in the TMD group. The pathological changes were more obvious in the marginal cornea, and it is correlated with severity of the disease.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Weiwei Wang ◽  
Xin Yang ◽  
Qian Yao ◽  
Qianqian Xu ◽  
Wenting Liu ◽  
...  

Abstract Background To investigate characteristics of the acute angle-closure crisis (AACC) and fellow eyes using confocal microscopy. Methods Unilateral AACC patients hospitalized at the Xi’an People’s Hospital from October 2017 to October 2020 were recruited in this cross-sectional study. Age-matched participants scheduled for cataract surgery were enrolled as a healthy control group. Corneal epithelial cells, subepithelial nerve fiber plexus, stromal cells, and endothelial cells were examined by confocal and specular microscopy. Results This study enrolled 41 unilateral AACC patients (82 eyes) and 20 healthy controls (40 eyes). Confocal microscopy revealed that the corneal nerve fiber density, corneal nerve branch density and corneal nerve fiber length were reduced significantly in AACC eyes. The stromal cells were swollen and the size of the endothelial cells was uneven with the deposition of punctate high-reflective keratic precipitate on the surface. In severe cases, the cell volume was enlarged, deformed, and fused. The corneal subepithelial nerve fiber, stromal layer, and endothelial layer were unremarkable in the fellow eyes, and the density of the endothelial cells was 2601 ± 529 cells/mm2, which was higher than 1654 ± 999 cells/mm2 in AACC eyes (P < 0.001). Corneal edema prevented the examination of 17 eyes using specular microscopy and in only four eyes using confocal microscopy. There were no significant differences in endothelial cell density between confocal and specular microscopy in the AACC eyes (P = 0.674) and fellow eyes (P = 0.247). The hexagonal cell ratio reduced significantly (P < 0.001), and average cell size and coefficient of variation of the endothelial cells increased significantly compared with fellow eyes (P < 0.001, P = 0.008). Conclusions AACC eye showed decreased density and length of corneal subepithelial nerve fiber plexus, activation of stromal cells, increased endothelial cell polymorphism, and decreased density.


2001 ◽  
Vol 7 (S2) ◽  
pp. 580-581
Author(s):  
CA Witz ◽  
S Cho ◽  
VE Centonze ◽  
IA Montoya-Rodriguez ◽  
RS Schenken

Using human peritoneal explants, we have previously demonstrated that endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) attach to intact mesothelium. Attachment occurs within one hour and mesothelial invasion occurs within 18 hours (Figure 1). We have also demonstrated that, in vivo, the mesothelium overlies a continuous layer of collagen IV (Col IV).More recently we have used CLSM, to study the mechanism and time course of ESC and EEC attachment and invasion through mesothelial monolayers. in these studies, CellTracker® dyes were used to label cells. Mesothelial cells were labeled with chloromethylbenzoylaminotetramethylrhodamine (CellTracker Orange). Mesothelial cells were then plated on human collagen IV coated, laser etched coverslips. Mesothelial cells were cultured to subconfluence. ESCs and EECs, labeled with chloromethylfluorscein diacetate (CellTracker Green) were plated on the mesothelial monolayers. Cultures were examined at 1, 6, 12 and 24 hours with simultaneous differential interference contrast and CLSM.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dmitry O Traktuev ◽  
Daniel N Prater ◽  
Aravind R Sanjeevaiah ◽  
Stephanie Merfeld-Clauss ◽  
Brian H Johnstone ◽  
...  

Introduction Both Endothelial progenitor cells (EPC) and adipose stromal cells (ASC) are under investigation as therapies for cardiovascular diseases. Both cell types are capable of modulating vascular assembly and are, thereby, capable of directly promoting revascularization of ischemic tissues. We have shown that EPC differentiate into endothelial cells to form small vessels, whereas ASC have pericytic properties and naturally stabilize vessels. In this study we tested the possibility that ASC would interact with EPC to assemble de novo vessels in collagen in an in vivo chimeric implant. Methods and Results Collagen implants embedded with either umbilical cord blood EPC or adult ASC or a 4:1 mixture of both (2x10 6 cells/ml) were implanted subcutaneously into NOD/SCID mice. After 14 d implants were harvested and evaluated by immunohistochemistry. There was a pronounced difference among the groups in vascular network assembly. The majority of vessels formed in the EPC and ASC monocultures were small capillaries bounded by a single endothelial layer. Conversely, 100% of the plugs embedded with both cell types were highly invaded with multilayered arteriolar vessels. The density of the CD31 + vessels in the EPC and co-culture plugs was 26.6 ± 5.8 and 122.4 ± 9.8 per mm 2 , respectively. No CD31 + cells of human origin were detected in the ASC monocultures, indicating that ASC, which do not express this EC-specific marker, engage murine EC or form pseudovessels in this system. The density of α-SMA + vessels with lumens per mm 2 was 13.1 ± 3.6 (EPC), 10.2 ± 3.5 (ASC) and 124.7 ± 19.7 (co-culture). The total overlap of CD31 + and SMA + vessels demonstrates that mature, multilayered conduits were formed with the co-culture. Moreover, the majority of these vessels were filled with erythrocytes (92.5 ± 16.2 per mm 2 ), indicating inosculation with the native vasculature, which was confirmed by ultrasound with echogenic microbubbles and persisted to at least 4 months. Conclusion This study is the first to demonstrate that non-transformed human EPC and ASC cooperatively form mature and stable vasculature with subsequent functional integration into a host vasculature system.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Justin P Van Beusecum ◽  
Natalia R Barbaro ◽  
Charles D Smart ◽  
David M Patrick ◽  
Cyndya A Shibao ◽  
...  

We have shown that dendritic cells (DCs) from hypertensive mice convey hypertension when adoptively transferred to recipients. Recently a novel subset of DCs in humans that express Axl and Sigelc-6 + (AS DCs) have been identified which drive T cell proliferation and produce IL-1β, IL-6 and IL-23, consistent with DCs we have observed in hypertension. We hypothesized that AS cells are increased in hypertension and contribute to immune activation in this disease. We quantified circulating AS DCs by flow cytometry in normotensive (n=23) and hypertensive (n=11) subjects and found a more than 2-fold increase in circulating AS DCs in hypertensive compared to normotensive subjects (297 ± 73 vs. 108 ± 26/ml; p =0.0304). To investigate the mechanism by which AS DCs are formed in hypertension, we co-cultured human aortic endothelial cells (HAECs) undergoing either normotensive (5%) or hypertensive (10%) cyclical stretch for 48 hours with CD14 + monocytes from normotensive donors. Co-culture of monocytes with HAECs exposed to 10% stretch significantly increased AS DCs and AS DC IL-1β production when compared to 5% stretch alone as assessed by flow cytometry (21 ± 5 vs. 131 ± 32 IL-1β + AS DCs). Moreover, inhibition of Axl signaling with R248, completely abolished the production of IL-1β in AS DCs (34 ± 8 IL-1β + AS DCs). In additional experiments we found that 10% stretch caused a 50% increase in release of growth arrest 6 (GAS6), the ligand for Axl, from HAECs compared to 5% stretch. Treatment of human monocytes with GAS6 mimicked the effect of 10% stretch in promoting AS cell formation and IL-1β production. Based on the increased secretion of GAS6 from HAECs, we used a J-wire to harvest human endothelial cells from 23 additional volunteers to assess endothelial cell activation and GAS6 secretion in vivo. We found a positive association between pulse pressure and plasma GAS6 (R 2 =0.25, p =0.0079) and a striking positive association between GAS6 and ICAM-1 (R 2 =0.39, p =0.0012). These data show that secretion of GAS6 by an activated endothelial seems to promote the formation and activation of AS DCs. Thus, the interplay between endothelial-derived GAS6 and AS DCs seem to be an important mechanism in human hypertension and might be a novel therapeutic target for this disease.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Gerna ◽  
Kabanova ◽  
Lilleri

In the 1970s–1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.


2020 ◽  
Vol 9 (11) ◽  
pp. 3574
Author(s):  
Emilio Pedrotti ◽  
Chiara Chierego ◽  
Tiziano Cozzini ◽  
Tommaso Merz ◽  
Neil Lagali ◽  
...  

Examination of the corneal surface by in vivo confocal microscopy (IVCM) allows for objective identification of corneal and conjunctival cell phenotypes to evaluate different epithelialization patterns. Detection of a corneal-conjunctival epithelial transition could be considered as a sign of restored epithelial function following simple limbal epithelial transplantation (SLET). This is a prospective, interventional case series. We assessed patients with limbal stem cell deficiency (LSCD) by IVCM, preoperatively and at monthly intervals following SLET. Sectors in the central and peripheral cornea were scanned. Immediately upon detection of multi-layered cells with the epithelial phenotype in the central cornea and confirmation of epithelial transition in all corneal sectors, the decision for keratoplasty was taken. Ten patients were enrolled. After SLET, epithelial phenotype in the central cornea and an epithelial transition were identified within six and nine months in seven and one patients, respectively. One patient was a partial success and one failed. Five patients underwent keratoplasty, with stable results up to 12 months. Identification of the epithelial transition zone by IVCM permits assessment of the efficacy of SLET, enabling subsequent planning of keratoplasty for visual rehabilitation. The stability of the corneal surface following keratoplasty confirms that the renewal of the corneal epithelium was effectively retained.


2020 ◽  
Vol 29 ◽  
pp. 096368972092968
Author(s):  
Lara Moussa ◽  
Alexia Lapière ◽  
Claire Squiban ◽  
Christelle Demarquay ◽  
Fabien Milliat ◽  
...  

Radiation therapy is crucial in the therapeutic arsenal to cure cancers; however, non-neoplastic tissues around an abdominopelvic tumor can be damaged by ionizing radiation. In particular, the radio-induced death of highly proliferative stem/progenitor cells of the colonic mucosa could induce severe ulcers. The importance of sequelae for patients with gastrointestinal complications after radiotherapy and the absence of satisfactory management has opened the field to the testing of innovative treatments. The aim of this study was to use adult epithelial cells from the colon, to reduce colonic injuries in an animal model reproducing radiation damage observed in patients. We demonstrated that transplanted in vitro-amplified epithelial cells from colonic organoids (ECO) of C57/Bl6 mice expressing green fluorescent protein implant, proliferate, and differentiate in irradiated mucosa and reduce ulcer size. To improve the therapeutic benefit of ECO-based treatment with clinical translatability, we performed co-injection of ECO with mesenchymal stromal cells (MSCs), cells involved in niche function and widely used in clinical trials. We observed in vivo an improvement of the therapeutic benefit and in vitro analysis highlighted that co-culture of MSCs with ECO increases the number, proliferation, and size of colonic organoids. We also demonstrated, using gene expression analysis and siRNA inhibition, the involvement of bone morphogenetic protein antagonists in MSC-induced organoid formation. This study provides evidence of the potential of ECO to limit late radiation effects on the colon and opens perspectives on combined strategies to improve their amplification abilities and therapeutic effects.


2001 ◽  
Vol 193 (9) ◽  
pp. 1027-1034 ◽  
Author(s):  
Glenn T. Furuta ◽  
Jerrold R. Turner ◽  
Cormac T. Taylor ◽  
Robert M. Hershberg ◽  
Katrina Comerford ◽  
...  

Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initial studies examining T84 colonic epithelial cells revealed that barrier function is uniquely resistant to changes elicited by hypoxia. A search for intestinal-specific, barrier-protective factors revealed that the human intestinal trefoil factor (ITF) gene promoter bears a previously unappreciated binding site for hypoxia-inducible factor (HIF)-1. Hypoxia resulted in parallel induction of ITF mRNA and protein. Electrophoretic mobility shift assay analysis using ITF-specific, HIF-1 consensus motifs resulted in a hypoxia-inducible DNA binding activity, and loading cells with antisense oligonucleotides directed against the α chain of HIF-1 resulted in a loss of ITF hypoxia inducibility. Moreover, addition of anti-ITF antibody resulted in a loss of barrier function in epithelial cells exposed to hypoxia, and the addition of recombinant human ITF to vascular endothelial cells partially protected endothelial cells from hypoxia-elicited barrier disruption. Extensions of these studies in vivo revealed prominent hypoxia-elicited increases in intestinal permeability in ITF null mice. HIF-1–dependent induction of ITF may provide an adaptive link for maintenance of barrier function during hypoxia.


Sign in / Sign up

Export Citation Format

Share Document