scholarly journals Effects of Climate Change on the Season of Botanical Tourism: A Case Study in Beijing

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yaqiong Zang ◽  
Junhu Dai ◽  
Zexing Tao ◽  
Huanjiong Wang ◽  
Quansheng Ge

Climate change could affect botanical tourism by altering the plant phenology (e.g., flowering and leaf coloring date) and the physical comfort of tourists. To date, few studies have simultaneously considered the influence of plant phenology and physical comfort on the travel suitability of botanical tourism. Taking Beijing as an example, this study used phenological data of 73 species from 1963 to 2017 to construct a phenological ornamental index (POI) according to the flowering and leaf coloring date of ornamental plant. The climate comfort index (CCI) of tourism was calculated by using meteorological data of the corresponding periods. Finally, the travel suitability index (TSI) was constructed by integrating the two indices (POI and CCI). The POI showed that the best period for spring flower viewing was from April 4 to May 10, while the best period for autumn leaves viewing was from October 11 to November 6 on average. According to the variation of the CCI within the year, the most comfortable period for spring tourism was matched with the best period for spring flower viewing (April 4 to June 1), but the most comfortable period for autumn tourism (September 4 to October 19) was earlier than the best period for autumn leaves viewing. The TSI indicated that the best periods for spring and autumn botanical tourism were April 7 to May 10 and October 10 to November 7, respectively. Based on the climate data under different scenarios (representative concentration pathways 4.5 and 8.5), we simulated the climate and phenological suitability for botanical tourism in the next thirty years. The results showed that the best period for spring botanical tourism during 2040–2050 was earlier and the period for autumn botanical tourism was later than that in the past 55 years. Meanwhile, the duration would shorten by 2–7 days for both seasons. This study provided a reference for assessing the impact of global climate change on the best season of botanical tourism.

2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2020 ◽  
Vol 48 (2) ◽  
pp. 1057-1069
Author(s):  
Radu POPESCU ◽  
Neculae ȘOFLETEA

The research carried out was aimed to assessing the phenological behavior of beech (Fagus sylvatica L.) in the southwestern area of the Carpathians, in submesothermal forest sites, differentiated from the majority mesothermal ones of this species. The data obtained may be used for predicting the phenological changes of the species, especially in the Carpathian area, under the future influence of expected climate change. Assessments for spring and autumn phenology (buds burst -BB and foliation, flowering and leaves senescence) were carried out on a transect with a difference in altitude of 1000 meters, in phenological research areas located at 200 m, 700 m and 1200 m. At each altitude level, 100 trees of I and II Kraft classes were phenologically characterized: 50 trees on the south-facing slope (sunny exposure) and 50 on the north-facing slope (shade exposure).The phenological data were interpreted in relation to climate data recorded in each area by a HOBO U23 Pro v2 sensor. The site conditions of submesothermal climate in the low altitude area led to DOY (day of the year) values below 100. The phenological differentiation of populations is evident in relation with the altitude, while at the same altitudinal level the influence of the exposure was much lower. The gradiental values by altitude sectors highlighted the nonlinearity of the development of foliation phenophase, the value being lower in the first 500 m, where the beech is under the impact of the submesothermal climate. It has been proven both the dependence of the foliation onset depending on the cumulation of temperatures in relation to the DOY moment and also on the values recorded throughout the vegetative rest. The altitudinal gradiental values resulting for flowering in the first and second altitudinal half of transect also differentiate the stands, but are lower than that resulting for BB. The leaves senescence has a delay of 1.8 up to 2.4 days per 100 meters altitude, and the length of the vegetation season is reduced more sharply in the upper half of the analyzed altitudinal transect. The sub-mesothermal climate could be involved in condensation of spring phenophases in the stands of the lower half of the researched area. Our data may be used for predicting the phenological changes, especially in the Carpathian area, under the expected climate change.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Mohammadreza Mohammadi ◽  
John Finnan ◽  
Chris Baker ◽  
Mark Sterling

This paper examines the impact that climate change may have on the lodging of oats in the Republic of Ireland and the UK. Through the consideration of a novel lodging model representing the motion of an oat plant due to the interaction of wind and rain and integrating future predictions of wind and rainfall due to climate change, appropriate conclusions have been made. In order to provide meteorological data for the lodging model, wind and rainfall inputs are analysed using 30 years’ time series corresponding to peak lodging months (June and July) from 38 meteorological stations in the United Kingdom and the Irish Republic, which enables the relevant probability density functions (PDFs) to be established. Moreover, climate data for the next six decades in the British Isles produced by UK climate change projections (UKCP18) are analysed, and future wind and rainfall PDFs are obtained. It is observed that the predicted changes likely to occur during the key growing period (June to July) in the next 30 years are in keeping with variations, which can occur due to different husbandry treatments/plant varieties. In addition, the utility of a double exponential function for representing the rainfall probability has been observed with appropriate values for the constants given.


Author(s):  
T. Berdimbetov ◽  
S. Nietullaeva ◽  
A. Yegizbayeva

Since 1960, water level began to decline considerably due to anthropogenic impact of the Aral Sea (AS), and it is continued to this day, which has led to dramatic changes in the climate around the AS, including ambient temperatures and sharp increases in evapotranspiration. Although, it isn't possible to see normal trend in this precipitation. Time series analysis of the FTI (First Time Interval 1901-1960) and STI (Second Time Interval, 1960-2015), highlighting climate change around the AS, based on Global Climate Data, suggests that there is a significant negative difference between precipitation and evapotranspiration during the drying of the AS. It is possible to see the logical compatibility of the air temperature and difference between precipitation and evapotranspiration observed around the AS, i.e. the temperature fluctuation trend is positive and contrary to the difference between precipitation and evapotranspiration negative trend, which means that the annual hydrological budget was reduced according to the time scale. In this article, determining the AS as the central point, we analyze the changes in the thermal and hydrological processes observed on the AS, as well as the impact to the environment of anomalous climate change observed on and around the sea like the drying out of the AS.


2006 ◽  
Vol 6 (3) ◽  
pp. 387-395 ◽  
Author(s):  
S. Wang ◽  
R. McGrath ◽  
T. Semmler ◽  
C. Sweeney ◽  
P. Nolan

Abstract. The impact of climate change on local discharge variability is investigated in the Suir River Catchment which is located in the south-east of Ireland. In this paper, the Rossby Centre Regional Atmospheric Model (RCA) is driven by different global climate data sets. For the past climate (1961–2000), the model is driven by ECMWF reanalysis (ERA-40) data as well as by the output of the general circulation models (GCM's) ECHAM4 and ECHAM5. For the future simulation (2021–2060), the model is driven by two GCM scenarios: ECHAM4_B2 and ECHAM5_A2. To investigate the influence of changed future climate on local discharge, the precipitation of the model output is used as input for the HBV hydrological model. The calibration and validation results of our ERA-40 driven present day simulation shows that the HBV model can reproduce the discharge fairly well, except the extreme discharge is systematically underestimated by about 15–20%. Altogether the application of a high resolution regional climate model in connection with a conceptual hydrological model is capable of capturing the local variability of river discharge for present-day climate using boundary values assimilated with observations such as ERA-40 data. However, using GCM data to drive RCA and HBV suggests, that there is still large uncertainty connected with the GCM formulation: For present day climate the validation of the ECHAM4 and ECHAM5 driven simulations indicates stronger discharge compared to the observations due to overprediction of precipitation, especially for the ECHAM5 driven simulation in the summer season. Whereas according to the ECHAM4_B2 scenario the discharge generally increases – most pronounced in the wet winter time, there are only slight increases in winter and considerable decreases in summer according to the ECHAM5_A2 scenario. This also leads to a different behaviour in the evolution of return levels of extreme discharge events: Strong increases according to the ECHAM4_B2 scenario and slight decreases according to the ECHAM5_A2 scenario.


2021 ◽  
Vol 2 (2) ◽  
pp. 164-171
Author(s):  
Mónika Lakatos ◽  
Zita Bihari ◽  
Beatrix Izsák ◽  
Olivér Szentes

Összefoglaló. A WMO 2021 elején kiadott állapotértékelője szerint a COVID–19 miatti korlátozások ellenére az üvegházhatású gázok légköri koncentrációja tovább emelkedett. A tengerszint emelkedés a közelmúltban gyorsult, rekordmagas volt a jégvesztés Grönlandon, az Antarktisz olvadása is gyorsulni látszik. Szélsőséges időjárás pusztított, élelmiszer-ellátási gondok léptek fel, és 2020-ban a COVID–19 hatásával együtt nőtt a biztonsági kockázat több régióban is. Az éghajlatváltozás felerősíti a meglévő kockázatokat, és újabb kockázatok is fellépnek majd a természeti és az ember által alkotott rendszerekben. Az éghajlatváltozás hatása a hazai mérési sorokban is megjelenik. Az Országos Meteorológiai Szolgálat (OMSZ) homogenizált, ellenőrzött mérései szerint 1901 óta 1,2 °C-ot nőtt az évi középhőmérséklet. Két normál időszakot vizsgálva egyértelmű a magasabb hőmérsékletek felé tolódás, a csapadék éven belüli eloszlása megváltozott, az őszi másodmaximum eltűnőben van. Nőtt az aszályhajlam, gyakoribbá váltak a hőhullámok, intenzívebb a csapadékhullás, emiatt az éghajlatvédelemi intézkedések mellett a jól megalapozott alkalmazkodás is indokolt. A biztonsági kockázatok csökkenthetők az OMSZ és Országos Katasztrófavédelmi Főigazgatóság közötti együttműködés által. Summary. The first part of the article gives an overview of the state of the global climate in 2020 based on the report compiled by the World Meteorological Organization (WMO, 2021) and network of partners from UN. According to this report, the 2020 was one of the three warmest years on record, despite a cooling La Niña event. The global mean temperature for 2020 (January to October) was 1.2 ± 0.1 °C above the 1850–1900 baseline, used as an approximation of pre-industrial levels. The latest six years have been the warmest on record. 2011-2020 was the warmest decade on record. The report on the “State of the Global Climate 2020” illustrates the state of the key indicators of the climate system, including greenhouse gas concentrations, increasing land and ocean temperatures, sea level rise, melting ice and glacier and extreme weather. It also highlights impacts on socio-economic development, migration and displacement and food security. All key climate indicators and associated impact information published in this report highlight continuing climate change, an increasing occurrence and intensification of extreme events, and severe losses and damage, affecting people, societies and economies. Extreme weather events triggered an estimated 10 000 000 displacements in 2020. Because of COVID-19 lockdowns, response and recovery operations were leading to delays in providing assistance. After decades of decline, the increase in food insecurity since 2014 is being driven by conflict and economic slowdown as well as climate variability and extreme weather events. Climate change will amplify existing risks and create new risks for natural and human systems. Risks are unevenly distributed and are generally greater for disadvantaged people and communities in countries at all levels of development. The global changes have local effects in Hungary as it is shown in the second part of the article. The climate monitoring at the Hungarian Meteorological Service is based on measurements stored in the Climate data archive. We apply data management tools to produce high quality and representative datasets to prepare climate studies. The data homogenization makes possible to eliminate inhomogeneities due to change in the measuring practice and station movements. Applying spatial interpolation procedure for meteorological data provide the spatial representativeness of the climate data used for monitoring. The surface temperature increase is slightly higher in Hungary than the global change from 1901. The annual precipitation decreased by 3% from 1901, although this change is not significant statistically. The monthly temperatures shifted to warmer monthly averages in the most recent normal period between 1991 and 2020 comparing to the 1961–1990 in each months. The annual course of the monthly precipitations changed, especially autumn. The monthly sum in September and in October increased substantially. The frequency of heatwave days increased by more than two weeks in the Little Plain and in the southern part of the Great Hungarian Plain from 1981, which is the most intense warming period globally. The intensification of the precipitation in the recent years is obvious in our region. The cooperation of the Disaster Risk Management and the Hungarian Meteorological Service could expand the adaptive capacity of the society to climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Author(s):  
Viktoriia Sydorenko ◽  

This article is devoted to an overview of such a category of migrants as climate refugees. The author pays attention to the general characteristics of the impact of global climate change on migrants. Particular attention is paid to the disclosure of the term “climate refugee”, the reasons for the emergence of this category of people, as well as the problems of counting climate refugees. The author also provides examples for solving these problems.


Sign in / Sign up

Export Citation Format

Share Document