scholarly journals Analysis on Fracture Behavior and Optimization of Beam-Column Connections with Expanded Flanges of Steel Frames

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongwei Ma ◽  
Zhen Zhang ◽  
Kun Wang ◽  
Yan Liu ◽  
Kai Guo ◽  
...  

In this study, the parameters of concave expanded flanges of beam-column connections of steel frames are optimized based on the effects of different sizes of concave expanded flanges on the fracture performance. Firstly, two beam-column connection models with concave expanded flanges are built and analyzed under cyclic loads, which have the same conditions as the specimens during the previous test. Secondly, the validity of the numerical simulation models is verified through analyzing the hysteretic behaviors of the connections with concave expanded flanges, such as the plastic hinge position, the hysteresis curves, the skeleton curves, the stiffness degradation, the ductility coefficient, and the energy dissipation capacity. Thirdly, in order to comprehensively evaluate the fracture status of metal materials, the relevant fracture evaluation index (the stress triaxiality ratio (Rσ), plastic equivalent strain index (PI), and cracking index (RI)) are introduced. Afterwards, eighteen numerical simulation models with differences in the length la of the reinforced section, the length lb of the transition section, and the width c of the reinforced section were analyzed. Finally, the parameters of the concave expanded flanges of the beam-column connections are optimized based on the results of the three fracture evaluation index.

2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


Author(s):  
Van-Long Hoang ◽  
Hung Nguyen Dang ◽  
Jean-Pierre Jaspart ◽  
Jean-François Demonceau
Keyword(s):  

2021 ◽  
Vol 73 (04) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17–19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199149, “Rate-Transient-Analysis-Assisted History Matching With a Combined Hydraulic Fracturing and Reservoir Simulator,” by Garrett Fowler, SPE, and Mark McClure, SPE, ResFrac, and Jeff Allen, Recoil Resources, prepared for the 2020 SPE Latin American and Caribbean Petroleum Engineering Conference, originally scheduled to be held in Bogota, Colombia, 17-19 March. The paper has not been peer reviewed. This paper presents a step-by-step work flow to facilitate history matching numerical simulation models of hydraulically fractured shale wells. Sensitivity analysis simulations are performed with a coupled hydraulic fracturing, geomechanics, and reservoir simulator. The results are used to develop what the authors term “motifs” that inform the history-matching process. Using intuition from these simulations, history matching can be expedited by changing matrix permeability, fracture conductivity, matrix-pressure-dependent permeability, boundary effects, and relative permeability. Introduction The concept of rate transient analysis (RTA) involves the use of rate and pressure trends of producing wells to estimate properties such as permeability and fracture surface area. While very useful, RTA is an analytical technique and has commensurate limitations. In the complete paper, different RTA motifs are generated using a simulator. Insights from these motif simulations are used to modify simulation parameters to expediate and inform the history- matching process. The simulation history-matching work flow presented includes the following steps: 1 - Set up a simulation model with geologic properties, wellbore and completion designs, and fracturing and production schedules 2 - Run an initial model 3 - Tune the fracture geometries (height and length) to heuristic data: microseismic, frac-hit data, distributed acoustic sensing, or other diagnostics 4 - Match instantaneous shut-in pressure (ISIP) and wellhead pressure (WHP) during injection 5 - Make RTA plots of the real and simulated production data 6 - Use the motifs presented in the paper to identify possible production mechanisms in the real data 7 - Adjust history-matching parameters in the simulation model based on the intuition gained from RTA of the real data 8 -Iterate Steps 5 through 7 to obtain a match in RTA trends 9 - Modify relative permeabilities as necessary to obtain correct oil, water, and gas proportions In this study, the authors used a commercial simulator that fully integrates hydraulic fracturing, wellbore, and reservoir simulation into a single modeling code. Matching Fracturing Data The complete paper focuses on matching production data, assisted by RTA, not specifically on the matching of fracturing data such as injection pressure and fracture geometry (Steps 3 and 4). Nevertheless, for completeness, these steps are very briefly summarized in this section. Effective fracture toughness is the most-important factor in determining fracture length. Field diagnostics suggest considerable variability in effective fracture toughness and fracture length. Typical half-lengths are between 500 and 2,000 ft. Laboratory-derived values of fracture toughness yield longer fractures (propagation of 2,000 ft or more from the wellbore). Significantly larger values of fracture toughness are needed to explain the shorter fracture length and higher net pressure values that are often observed. The authors use a scale- dependent fracture-toughness parameter to increase toughness as the fracture grows. This allows the simulator to match injection pressure data while simultaneously limiting fracture length. This scale-dependent toughness scaling parameter is the most-important parameter in determining fracture size.


Author(s):  
Andrius Grigusevičius ◽  
Gediminas Blaževičius

This paper focuses on the creation and numerical application of physically nonlinear plane steel frames analysis problems. The frames are analysed using finite elements with axial and bending deformations taken into account. Two nonlinear physical models are used and compared – linear hardening and ideal elastic-plastic. In the first model, distributions of plastic deformations along the elements and across the sections are taken into account. The proposed method allows for an exact determination of the stress-strain state of a rectangular section subjected to an arbitrary combination of bending moment and axial force. Development of plastic deformations in time and distribution along the length of elements are determined by dividing the structure (and loading) into the parts (increments) and determining the reduced modulus of elasticity for every part. The plastic hinge concept is used for the analysis based on the ideal elastic-plastic model. The created calculation algorithms have been fully implemented in a computer program. The numerical results of the two problems are presented in detail. Besides the stress-strain analysis, the described examples demonstrate how the accuracy of the results depends on the number of finite elements, on the number of load increments and on the physical material model. COMSOL finite element analysis software was used to compare the presented 1D FEM methodology to the 3D FEM mesh model analysis.


2021 ◽  
Author(s):  
Chuang Liu ◽  
Huamin Li

Abstract In the process of longwall top coal caving, the selection of the top coal caving interval along the advancing direction of the working face has an important effect on the top coal recovery. To explore a realistic top coal caving interval of the longwall top coal caving working face, longwall top coal caving panel 8202 in the Tongxin Coal Mine is used as an example, and 30 numerical simulation models are established by using Continuum-based Distinct Element Method (CDEM) simulation software to study the top coal recovery with 4.0 m, 8.0 m, 12.0 m, 16.0 m, 20.0 m and 24.0 m top coal thicknesses and 0.8 m, 1.0 m, 1.2 m, 1.6 m and 2.4 m top coal caving intervals. The results show that with an increase in the top coal caving interval, the single top coal caving amount increases. The top coal recovery is the highest with a 0.8 m top coal caving interval when the thickness of the top coal is less than 4.0 m, and it is the highest with a 1.2 m top coal caving interval when the coal seam thickness is greater than 4.0 m. These results provide a reference for the selection of a realistic top coal caving interval in thick coal seam caving mining.


2012 ◽  
Vol 60 ◽  
pp. 98-104 ◽  
Author(s):  
Cuong Ngo-Huu ◽  
Phu-Cuong Nguyen ◽  
Seung-Eock Kim

Author(s):  
Yi-Qun Tang ◽  
He Zhu ◽  
Er-Feng Du

This paper is concerned with an incremental iterative force recovery method in the second-order plastic hinge analysis of steel frames mainly modelled by a single element per member. Second-order beam-column elements are preferred in the direct analysis of steel frames due to their high accuracy and efficiency. However, formulations of these elements are complicated, and therefore they may have a problem of getting element force recovery in inelastic analysis. To overcome this difficulty, a novel incremental iterative force recovery method for second-order beam-column elements is proposed to perform plastic hinge analysis. The proposed method is derived more strictly and has good performance. Also, the section assemblage approach and the refined plastic hinge method are adopted in this study to consider the gradual degradation of section stiffness in the plastic hinge analysis. To verify the accuracy, efficiency and robustness of the proposed method, several benchmark examples are analyzed by the proposed method and compared with solutions reported by early researchers.


Sign in / Sign up

Export Citation Format

Share Document