scholarly journals True-Triaxial Drained Test of Tengger Desert Sand

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuefeng Li ◽  
Zhigang Ma ◽  
Wennan Lu ◽  
Yandong Wang

For the lack of accurate test results in design and maintenance of desert-crossing highways in the Tengger Desert of western China, the GDS true-triaxial system was used to conduct the drained test on dense sand. Under the condition of different intermediate principal stress ratio b-value, the results showed that the stress-strain relationships in three orthogonal directions had significant differences, presenting significant anisotropy. The peak of the generalized shear stress increased with the increase of b-value. Except under the condition of b = 0, the specimen contracted firstly and then dilated, while the others dilated. The results of the different confining pressures showed that the stress-strain relationships appeared as a hardening type at low confining pressures, and as the confining pressure increased, the stress-strain relationships exhibit hardening, peaking, softening, and stable deformation characteristics. At low confining pressure, the contractive behaviors were not obvious, mainly as dilatancy, and as the confining pressure increased, the dilatancy increased gradually. The specimen transformed contract to dilatancy, and when the confining pressure reached 800 kPa, the specimen exhibited contractive behavior. The test results will provide data for subgrade design and construction in desert area.

2011 ◽  
Vol 94-96 ◽  
pp. 1146-1151 ◽  
Author(s):  
Guan Rong ◽  
Xiao Jiang Wang

Permeability test for complete stress-strain process of coarse sandstone were carried out in triaxial test instrument. On the basis of test results, the influence of confining pressure and strain on the hydraulic conductivity was discussed. It is shown that in the complete stress-strain process, hydraulic conductivity changes in the law that presents the same character with the curve of stress-strain. The hydraulic conductivity reduces slightly with the increase of deviatoric stress in the stage of micro fracture compressing and elastic; In the elastoplastic stage, along with the expansion of new fractures, the hydraulic conductivity increases slowly at first and then reaches sharply to the maximum value after peak point; In the post-peak stage, the fracture which controls the hydraulic conductivity of coarse sandstone is compressed because of the confining pressure and the hydraulic conductivity decreases. During the process of deformation and failure, the hydraulic conductivity is more sensitive to the change of circumferential strain. With the increase of confining pressure, the increased value from initial to peak value and the decreased value from peak to residual value decreases.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhi-jun Zhang ◽  
Yao-hui Guo ◽  
Ya-kun Tian ◽  
Lin Hu ◽  
Xi-xian Wang ◽  
...  

Particle flow numerical simulation software (PFC3D) was utilized to establish the consolidated-undrained triaxial compression test numerical models of mine tailings with different dry densities to deeply investigate the macroscopic and microscopic characteristics of mine tailings in a tailing pond in Hunan Province. Comparing the results of the simulation and the laboratory experiment, the mesoscopic parameters of the particle flow numerical simulation were obtained through continuously adjusting the mesoscopic parameter with the higher degree of agreement between the stress-strain curve, the peak strength, and the elastic modulus as the determining standard. The macroscopic and microscopic characteristics of mine tailings were studied from the perspectives of stress-strain, axial strain-volume strain, coordination number, particle velocity vector, and contact force between particles. After numerous numerical tests, it was found that the PFC3D simulation results are consistent with experiment results of the dry density tailing samples under different confining pressures; compared with the high confining pressure, the simulation test results at lower confining pressures were more with that of the laboratory tests; low density and high confining pressure both have inhibitory effect on the dilatancy characteristics of triaxial samples; with the same confining pressure, the dilatancy tendency of low dry density samples is suppressed comparing with the high dry density samples. The initial coordination number of the numerical model is large, which proves that the contact degree of the model is good to some extent.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuefeng Li ◽  
Weinan Lu ◽  
Zhigang Ma ◽  
Ni Tuo

Aimed at the characteristics of aeolian sand under rapid construction conditions in desert geotechnical engineering, a series of the true triaxial undrained test were carried out on the GDS apparatus. The 3D deformation, failure, and other characteristics of the dense sand are obtained. Under the condition of same p c , the state transition point where the void water pressure changes from increasing to decreasing appears earlier and leads to enhanced dilatancy with the increase of b, which means the enhanced dilatancy of dense sand caused the increase in strength. The results of the same b shows that the void water pressure generally indicates a decrease at low confining pressure and an increase at high confining pressure, indicating that the aeolian sand shows dilatancy at low confining pressure and contraction at high confining pressure. The state transition point increases with the increase of p c , but all points tend to the same critical state line and state transition line. When b = 0, the critical state line is q = 1.57 p ′ , and the state transition line is q = 1.23 p ′ . When b = 1, the critical state line is q = 1.24 p ′ , and the state transition line is q = 1.04 p ′ . The results at same b obtained the unified critical state line and the state transition line. Therefore, the true triaxial test can obtain the unified relationship of void ratio, p c and b, which overcomes the fact that the existing test cannot consider the influence of b. The test results provide a basis data for the design, construction, and maintenance of geotechnical engineering in Tengger Desert.


2016 ◽  
Vol 38 (4) ◽  
pp. 3-13 ◽  
Author(s):  
Sidali Denine ◽  
Noureddine Della ◽  
Muhammed Rawaz Dlawar ◽  
Feia Sadok ◽  
Jean Canou ◽  
...  

Abstract This paper presents results of a series of undrained monotonic compression tests on loose sand reinforced with geotextile mainly to study the effect of confining stress on the mechanical behaviour of geotextile reinforced sand. The triaxial tests were performed on reconstituted specimens of dry natural sand prepared at loose relative density (Dr = 30%) with and without geotextile layers and consolidated to three levels of confining pressures 50, 100 and 200 kPa, where different numbers and different arrangements of reinforcement layers were placed at different heights of the specimens (0, 1 and 2 layers). The behaviour of test specimens was presented and discussed. Test results showed that geotextile inclusion improves the mechanical behaviour of sand, a significant increase in the shear strength and cohesion value is obtained by adding up layers of reinforcement. Also, the results indicate that the strength ratio is more pronounced for samples which were subjected to low value of confining pressure. The obtained results reveal that high value of confining pressure can restrict the sand shear dilatancy and the more effect of reinforcement efficiently.


2010 ◽  
Vol 168-170 ◽  
pp. 1934-1942
Author(s):  
Zheng Shen ◽  
Lan Zong ◽  
Xiang Dong

The stress-strain characteristics of the fly ash blended with curing agent was studied using uniaxial and triaxial compression tests. Curing agent JNS-2 was used as the stabilizing agents in sample preparation. Four curing agent JNS-2 contents of 3%, 6%, 9% and 12% were selected for sample preparation. UU triaxial compression tests were conducted in a range of confining pressures from 100 kPa to 300 kPa. The experimental results obtained from the laboratory tests showed that curing age, mixture ratio, compaction degree and confining pressures had significant influence on the shape of curves. Uniaxial stress-strain test results demonstrated that the latter strength and deformation characteristics of the fly ash blended with curing agent grew little and with the increase of curing agent amount and compaction factor, the curve of uniaxial stress-strain changed significantly. On the other hand, triaxial stress-strain test results indicted that the failure strain showed a partial negative growth trend with the increase of curing agent amount, and the failure stress showed a partial positive growth trend with the increase of curing agent amount. When the curve was at high confining pressure, it showed hardening type, when at low confining pressure it showed softening type.


2021 ◽  
Vol 9 (7) ◽  
pp. 750
Author(s):  
Chen-Xiang Dai ◽  
Qiong-Fang Zhang ◽  
Shao-Heng He ◽  
An Zhang ◽  
Hua-Feng Shan ◽  
...  

In this study, to explore the microstructure deformation mechanism of marine soft marine soil under cyclic loading, we analyzed the dynamic properties of soft marine soil under cyclic loading via dynamic consolidation compression testing. Then, using Image-Pro Plus (IPP) 6.0 image analysis software, and according to the dynamic consolidation compression test results and the images from a scanning electron microscope (SEM), we determined the weakening effect of soft soils under different consolidation confining pressures, different cyclic stress ratios, and different over-consolidation ratios. After dynamic consolidation and compression, the pore structure of undisturbed soft marine soil tends to compact, the degree of soil particle fragmentation intensifies, small pores increase, large pores decrease, the pores become more regular, and the distribution of pores is directional. Subsequently, for undisturbed soft marine soil, the higher the consolidated confining pressure, cyclic dynamic stress ratio, and over-consolidation ratio, the greater the damage to the pore structure, and the more obvious the structural weakening effect exhibited under cyclic loading.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jianping Yang ◽  
Weizhong Chen ◽  
Diansen Yang ◽  
Hongming Tian

The permeability of intact marble samples collected from the depth of 1.6 km in southwestern China is investigated under moderate confining pressures and temperatures. No microcracks initiate or propagate during the tests, and the variation of permeability is due to the change of aperture of microcracks. Test results show a considerable decrease of permeability along with confining pressure increase from 10 to 30 MPa and temperature increase from 15 to 40°C. The thermal effect on the permeability is notable in comparison with the influence of the stress. A simple permeability evolution law is developed to correlate the permeability and the porosity in the compressive regime based on the microphysical geometric linkage model. Using this law, the permeability in the compressive regime for crystalline rock can be predicted from the volumetric strain curve of mechanical tests.


2014 ◽  
Vol 580-583 ◽  
pp. 3144-3148 ◽  
Author(s):  
Hua Zhang ◽  
Ao Yu Xie ◽  
Yu Wei Gao

Using the HJC dynamic constitutive model, the Split Hopkinson Pressure Bar (SHPB) impact test with confining pressure for concrete was simulated in the software ANSYS/LS-DYNA. The confining pressure was simulated by applying constant pressure around the specimen. The triangle velocity wave, which has less diffusion, is used as loader in the simulation. The confining pressures used were 0MPa, 2MPa, 4MPa, 8MPa and 16MPa and the stress-strain curves were presented. The influence of confining pressure on the dynamic properties was analyzed by comparing the stress-strain curves of concrete under different stress states. The strain rate decreases sensitively as long as the confining pressure increases. By debugging the impact velocity, the stress-strain curves under the similar strain rate were obtained, which indicate the toughening and reinforcing effect with the increase of confining pressure.


2006 ◽  
Vol 43 (10) ◽  
pp. 1096-1104 ◽  
Author(s):  
De'an Sun ◽  
Tugen Feng ◽  
Hajime Matsuoka

A middle-sized triaxial test apparatus for a specimen 20 cm in height and 10 cm in diameter was developed to measure the deformation and strength of weak rock or gravel. High-quality undisturbed samples of a weathered weak rock were taken from a dam site by a core drilling method. To avoid damage to the structure of the weak rock due to saturation of specimens as a result of measuring volume change through the water change in a burette, the lateral deformation of specimens was directly measured in the unsaturated condition using three rings mounted on the specimen. Using the developed triaxial test apparatus, isotropic compression tests and consolidated–drained triaxial compression tests were performed on unsaturated or saturated undisturbed samples under confining pressures of 49, 98, 196, 392, 539, and 683 kPa. The test results show that the stress–strain relationship of the weathered weak rock under both unsaturated and saturated conditions is strongly influenced by the confining pressure when the confining pressure is less than 392 kPa, and the stress–strain behaviour becomes similar to that of normally consolidated clay when the confining pressure is greater than 392 kPa. Comparison of results of triaxial tests on unsaturated and saturated specimens shows that the saturated samples become somewhat weak. The test results also show that the bonding and stress history largely influence the stress–strain relationship at small strain levels.Key words: weathered weak rock, microstructure, undisturbed sample, deformation, strength, triaxial test, unsaturated sample.


Sign in / Sign up

Export Citation Format

Share Document