scholarly journals Leg Locomotion Adaption for Quadruped Robots with Ground Compliance Estimation

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Songyuan Zhang ◽  
Hongji Zhang ◽  
Yili Fu

Locomotion control for quadruped robots is commonly applied on rigid terrains with modelled contact dynamics. However, the robot traversing different terrains is more important for real application. In this paper, a single-leg prototype and a test platform are built. The Cartesian coordinates of the foot-end are obtained through trajectory planning, and then, the virtual polar coordinates in the impedance control are obtained through geometric transformation. The deviation from the planned and actual virtual polar coordinates and the expected force recognized by the ground compliance identification system are sent to the impedance controller for different compliances. At last, several experiments are carried out for evaluating the performance including the ground compliance identification, the foot-end trajectory control, and the comparison between pure position control and impedance control.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Emmanouil Spyrakos-Papastavridis ◽  
Jian S. Dai

Abstract This paper attempts to address the quandary of flexible-joint humanoid balancing performance augmentation, via the introduction of the Full-State Feedback Variable Impedance Control (FSFVIC), and Model-Free Compliant Floating-base VIC (MCFVIC) schemes. In comparison to rigid-joint humanoid robots, efficient balancing control of compliant bipeds, powered by Series Elastic Actuators (or harmonic drives), requires the design of more sophisticated controllers encapsulating both the motor and underactuated link dynamics. It has been demonstrated that Variable Impedance Control (VIC) can improve robotic interaction performance, albeit by introducing energy-injecting elements that may jeopardize closed-loop stability. To this end, the novel FSFVIC and MCFVIC schemes are proposed, which amalgamate both collocated and non-collocated feedback gains, with power-shaping signals that are capable of preserving the system's stability/passivity during VIC. The FSFVIC and MCFVIC stably modulate the system's collocated state gains to augment balancing performance, in addition to the non-collocated state gains that dictate the position control accuracy. Utilization of arbitrarily low-impedance gains is permitted by both the FSFVIC and MCFVIC schemes propounded herein. An array of experiments involving the COmpliant huMANoid reveals that significant balancing performance amelioration is achievable through online modulation of the full-state feedback gains (VIC), as compared to utilization of invariant impedance control.


2013 ◽  
Vol 765-767 ◽  
pp. 1920-1923
Author(s):  
Li Jiang ◽  
Yang Zhou ◽  
Bin Wang ◽  
Chao Yu

A novel approach to impedance control based on the object is proposed to control dual-arm systems with senseless force. Considering the motion of the object, the statics and dynamics of the dual-arm systems are modeled. Extending the dynamics of dual-arm system and the impedance of object to the operational space, impedance control with senseless force is presented. Simulations on a dual-arm system are carried out to demonstrate the performance of the proposed control scheme. Comparing with position control, results of numerical simulations show that the proposed scheme realizes suitable compliant behaviors in terms of the object, and minimizes the error of the relative position between the manipulators even without force sensors.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Lizheng Pan ◽  
Aiguo Song ◽  
Suolin Duan ◽  
Zhuqing Yu

Safety is one of the crucial issues for robot-aided neurorehabilitation exercise. When it comes to the passive rehabilitation training for stroke patients, the existing control strategies are usually just based on position control to carry out the training, and the patient is out of the controller. However, to some extent, the patient should be taken as a “cooperator” of the training activity, and the movement speed and range of the training movement should be dynamically regulated according to the internal or external state of the subject, just as what the therapist does in clinical therapy. This research presents a novel motion control strategy for patient-centered robot-aided passive neurorehabilitation exercise from the point of the safety. The safety-motion decision-making mechanism is developed to online observe and assess the physical state of training impaired-limb and motion performances and regulate the training parameters (motion speed and training rage), ensuring the safety of the supplied rehabilitation exercise. Meanwhile, position-based impedance control is employed to realize the trajectory tracking motion with interactive compliance. Functional experiments and clinical experiments are investigated with a healthy adult and four recruited stroke patients, respectively. The two types of experimental results demonstrate that the suggested control strategy not only serves with safety-motion training but also presents rehabilitation efficacy.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Mingfang Chen ◽  
Kaixiang Zhang ◽  
Sen Wang ◽  
Fei Liu ◽  
Jinxin Liu ◽  
...  

Trajectory planning is the foundation of locomotion control for quadruped robots. This paper proposes a bionic foot-end trajectory which can adapt to many kinds of terrains and gaits based on the idea of trajectory planning combining Cartesian space with joint space. Trajectory points are picked for inverse kinematics solution, and then quintic polynomials are used to plan joint space trajectories. In order to ensure that the foot-end trajectory generated by the joint trajectory planning is closer to the original Cartesian trajectory, the distributions of the interpolation point are analyzed from the spatial domain to temporal domain. An evaluation function was established to assess the closeness degree between the actual trajectory and the original curve. Subsequently, the particle swarm optimization (PSO) algorithm and genetic algorithm (GA) for the points selection are used to obtain a more precise trajectory. Simulation and physical prototype experiments were included to support the correctness and effectiveness of the algorithms and the conclusions.


Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1642-1664 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
V. Feliu-Batlle ◽  
S. Hassan HosseinNia

SUMMARYThis paper proposes an adaptive robust impedance control for a single-link flexible arm when it encounters an environment at an unknown intermediate point. First, the intermediate collision point is estimated using a collision detection algorithm. The controller, then, switches from free to constrained motion mode. In the unconstrained motion mode, the exerted force to environment is nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In the constrained motion mode, the reference trajectory is determined by the desired target dynamic impedance. The simulation results demonstrate the efficiency of proposed control scheme.


2019 ◽  
Vol 9 (5) ◽  
pp. 924 ◽  
Author(s):  
Yahui Gan ◽  
Jinjun Duan ◽  
Ming Chen ◽  
Xianzhong Dai

In this paper, the trajectory planning and position/force coordination control of multi-robot systems during the welding process are discussed. Trajectory planning is the basis of the position/ force cooperative control, an object-oriented hierarchical planning control strategy is adopted firstly, which has the ability to solve the problem of complex coordinate transformation, welding process requirement and constraints, etc. Furthermore, a new symmetrical internal and external adaptive variable impedance control is proposed for position/force tracking of multi-robot cooperative manipulators. Based on this control approach, the multi-robot cooperative manipulator is able to track a dynamic desired force and compensate for the unknown trajectory deviations, which result from external disturbances and calibration errors. In the end, the developed control scheme is experimentally tested on a multi-robot setup which is composed of three ESTUN industrial manipulators by welding a pipe-contact-pipe object. The simulations and experimental results are strongly proved that the proposed approach can finish the welding task smoothly and achieve a good position/force tracking performance.


SIMULATION ◽  
2017 ◽  
Vol 93 (7) ◽  
pp. 619-630 ◽  
Author(s):  
Sunil Kumar ◽  
Vikas Rastogi ◽  
Pardeep Gupta

A hybrid impedance control scheme for the force and position control of an end-effector is presented in this paper. The interaction of the end-effector is controlled using a passive foundation with compensation gain. For obtaining the steady state, a proportional–integral–derivative controller is tuned with an impedance controller. The hybrid impedance controller is implemented on a terrestrial (ground) single-arm robot manipulator. The modeling is done by creating a bond graph model and efficacy is substantiated through simulation results. Further, the hybrid impedance control scheme is applied on a two-link flexible arm underwater robot manipulator for welding applications. Underwater conditions, such as hydrodynamic forces, buoyancy forces, and other disturbances, are considered in the modeling. During interaction, the minimum distance from the virtual wall is maintained. A simulation study is carried out, which reveals some effective stability of the system.


Author(s):  
Jun Wu ◽  
Fenglei Ni ◽  
Yuanfei Zhang ◽  
Shaowei Fan ◽  
Qi Zhang ◽  
...  

Purpose This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly. Design/methodology/approach The dynamics of the manipulator is firstly presented with linear property. The controller used in connector assembly is inspired by human operation habits in similar tasks. The hybrid impedance control is adopted to apply force in the assembly direction and provide compliance in rest directions. The reference trajectory is implemented with an adaptive controller. Event-based switching strategy is conducted for a smooth transition from unconstrained to constrained space. Findings The method can ensure both ideal compliance behaviour with dynamic uncertainty and a smooth transition from unconstrained to constrained space. Also, the method can ensure compliant connector assembly with a good tolerance to the target estimation error. Practical implications The method can be applied in the connector assembly by “pushing” operation. The controller devotes efforts on force tracking and smooth transition, having potential applications in contact tasks in delicate environment. Originality/value As far as the authors know, the paper is original in providing a uniform controller for improving force and position control performance in both unconstrained and constrained space with dynamic uncertainty. The proposed controller can ensure a smooth transition by only adjusting parameters.


Sign in / Sign up

Export Citation Format

Share Document