scholarly journals Study on Reutilization of Pyrolytic Residues of Oily Sludge

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Chao Tang ◽  
Jiaojiao Guan ◽  
Shuixiang Xie

Pyrolytic residues of oily sludge are a kind of hazardous solid waste produced by high-temperature pyrolysis of oily sludge, which still contains a certain amount of mineral oil; improper disposal can cause secondary pollution. In order to reutilize the pyrolytic residues of oily sludge, the pyrolytic carbon in pyrolytic residues is recovered by a combination of physical flotation and chemical separation, and they are used for the treatment of oilfield wastewater and adsorption of oil. The results showed that the purity of the pyrolytic carbon is 95.93%; many pores of different sizes are distributed on the surface, with mainly mesoporous distribution. Specific surface area, pore volume, and average pore diameter reach 454.47 m2/g, 0.61 cm3/g, and 6.91 nm, respectively. Adsorption effect of pyrolytic carbon on COD and oil in oilfield wastewater is better than that of activated carbon at the same condition. With regard to adsorption on diesel and crude oil, the initial instantaneous adsorption rate of pyrolytic carbon is 3.8 times and 1.86 times faster than that of activated carbon, respectively. When pyrolytic carbon reaches saturated adsorption, cumulative adsorption of activated carbon on diesel and crude oil is much lower than that of pyrolytic carbon.

2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Farid Nasir Ani ◽  
Muhammad Mat Junoh ◽  
Zarina Ab Muis

A study was conducted on Mukah coal using fixed bed reactor and one step activation with varying resident time and temperatures. CO2 gas was used for the activation process. The one-step continuous process comprised of carbonization and activation processes. The burn off analysis for 80 grams of Mukah coal was done to obtain volatiles removal at various carbonization temperatures. The results obtained showed that at 900oC, the percentages of burn off and the remaining weight were 42.2% and 57.8% respectively. Micrometrics ASAP2010 was used to analyze Mukah coal activated carbon in obtaining the BET surface area, the micropore area, and the average pore diameter. The results obtained indicated that activation at 900oC gave the highest BET surface area with 675m2/g, while the highest micropore area with 427 m2/g was obtained at 800oC. In addition, the average pore diameter range was within 18.5 to 26.4 A. 


2009 ◽  
Vol 79-82 ◽  
pp. 1907-1910
Author(s):  
Zhi Gang Xie

Porous activated carbon was prepared from orange wastes using zinc chloride as an activating agent by one-step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on pore characteristics of activated carbon were studied. The porous structures of the orange wastes activated carbon were investigated by BET, D-R equations, BJH equations and Kelvin theory. The morphology was observed using transmission electron microscopy (TEM). The mesoporous activated carbon is gained when the impregnation ratio is 3:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has total pore volume 2.098 cm3/g, mesoporous pore volume 1.438 cm3/g, with a high BET surface area 1476m2/g. The pore distribution of the mesoporous activated carbon is very concentrative, with average pore diameter of 3.88nm. While, the high specific surface area activated carbon is gained when the impregnation ratio is 2:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has high BET surface area 1909 m2/g, while the total pore volume is only 1.448cm3/g and microporous pore volume is 0.889cm3/g, with average pore diameter of 2.29 nm.


Author(s):  
Erman Taer ◽  
R. Taslim ◽  
Sugianto Sugianto ◽  
M. Paiszal ◽  
Mukhlis Mukhlis ◽  
...  

Activated carbon monoliths (ACMs) with average pore diameters in the meso- and micropore regions were successfully produced from biomass material. ACM synthesis uses chemical activation with KOH and ZnCl<sub>2</sub> activating agents. The carbon and activating agent mass ratios were 1:1, 1:3, 1:5 and 1:7. Both activating materials produced an ACM with an average pore diameter of 3.2 nm. The specific capacitance, specific surface area, energy and power were as high as 63 F/g, 650 m<sup>2</sup>/g, and 0.23 Wh/kg for KOH and 73 F/g, and 522 m<sup>2</sup>/g, and 19 W/kg for ZnCl<sub>2</sub> activating agents, respectively. For comparison, we also studied the physical and electrochemical properties of ACM with an average pore size in the micropore range from the same raw material.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


1997 ◽  
Vol 35 (7) ◽  
pp. 187-195 ◽  
Author(s):  
Binle Lin ◽  
K. Futono ◽  
A. Yokoi ◽  
M. Hosomi ◽  
A. Murakami

Establishing economic treatment technology for safe disposal of photo-processing waste (PW) has most recently become an urgent environmental concern. This paper describes a new biological treatment process for PW using sulfur-oxidizing bacteria (SOB) in conjunction with activated carbon (AC). Batch-type acclimation and adsorption experiments using SOB/PAC, SOB/PNAC, and SOB reactor type systems demonstrated that AC effectively adsorbs the toxic/refractory compounds which inhibit thiosulfate oxidization of SOB in PW. Thus, to further clarify the effect of AC, we performed a long-term (≈ 160 d) continuous-treatment experiment on 4- to 8-times dilution of PW using a SOB/GAC system which simulated a typical wastewater treatment system based on an aerobic activated sludge process that primarily uses acclimated SOB. The thiosulfate load and hydraulic retention time (HRT) were fixed during treatment such that they ranged from 0.8-3.7 kg S2O32-/l/d and 7.7-1.9 d, respectively. As expected, continuous treatment led to breakthrough of the adsorption effect of GAC. Renewing the GAC and continuing treatment for about 10 d demonstrated good treatment effectiveness.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Denise S. Cordeiro ◽  
Fernando L. Cassio ◽  
Larissa Ciccotti ◽  
Thiago L. R. Hewer ◽  
Paola Corio ◽  
...  

AbstractPraseodymium doped TiO2 nanoparticles were successfully prepared by the sol–gel method and characterized by X-ray powder diffraction, N2 adsorption–desorption isotherm, and UV–vis spectroscopy. The effects of the dopant on the crystallite size, specific surface area, average pore diameter, pore volume, and bandgap energy were investigated. The photocatalytic activity of the catalysts was evaluated by bisphenol A degradation and mineralization, which is a representative endocrine disruptor. Furthermore, under visible light irradiation the Pr-modified TiO2 photocatalysts exhibited higher photocatalytic efficiency than unmodified TiO2. When praseodymium was loaded (1.0–5.0%) onto the surface of TiO2, the rates of degradation and mineralization were increased 3–5 times.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2020 ◽  
Vol 12 (17) ◽  
pp. 6862
Author(s):  
Chien Li Lee ◽  
Cheng-Hsien Tsai ◽  
Chih-Ju G. Jou

The oily sludge from crude oil contains hazardous BTEX (benzene, toluene, ethylbenzene, xylene) found in the bottom sediment of the crude oil tank in the petroleum refining plant. This study uses microwave treatment of the oily sludge to remove BTEX by utilizing the heat energy generated by the microwave. The results show that when the oily sludge sample was treated for 60 s under microwave power from 200 to 300 W, the electric field energy absorbed by the sample increased from 0.17 to 0.31 V/m and the temperature at the center of the sludge sample increased from 66.5 °C to 96.5 °C. In addition, when the oily sludge was treated for 900 s under microwave power 300 W, the removal rates were 98.5% for benzene, 62.8% for toluene, 51.6% for ethylbenzene, and 29.9% for xylene. Meanwhile, the highest recovery rates of light volatile hydrocarbons in sludge reached 71.9% for C3, 71.3% for C4, 71.0% for C5, and 78.2% for C6.


2012 ◽  
Vol 550-553 ◽  
pp. 158-163 ◽  
Author(s):  
Zi Yuan Liu ◽  
Sheng Li Chen ◽  
Peng Dong ◽  
Xiu Jun Ge

Through the measured effective diffusion coefficients of Dagang vacuum residue supercritical fluid extraction and fractionation (SFEF) fractions in FCC catalysts and SiO2model catalysts, the relation between pore size of catalyst and effective diffusion coefficient was researched and the restricted diffusion factor was calculated. The restricted diffusion factor in FCC catalysts is less than 1 and it is 1~2 times larger in catalyst with polystyrene (PS) template than in conventional FCC catalyst without template, indicating that the diffusion of SFEF fractions in the two FCC catalysts is restricted by the pore. When the average molecular diameter is less than 1.8 nm, the diffusion of SFEF fractions in SiO2model catalyst which average pore diameter larger than 5.6 nm is unrestricted. The diffusion is restricted in the catalyst pores of less than 8 nm for SFEF fractions which diameter more than 1.8 nm. The tortuosity factor of SiO2model catalyst is obtained to be 2.87, within the range of empirical value. The effective diffusion coefficient of the SFEF fractions in SiO2model catalyst is two orders of magnitude larger than that in FCC catalyst with the same average pore diameter. This indicate that besides the ratio of molecular diameter to the pore diameter λ, the effective diffusion coefficient is also closely related to the pore structure of catalyst. Because SiO2model catalyst has uniform pore size, the diffusion coefficient can be precisely correlated with pore size of catalyst, so it is a good model material for catalyst internal diffusion investigation.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Huaxing Xu ◽  
Biao Gao ◽  
Hao Cao ◽  
Xueyang Chen ◽  
Ling Yu ◽  
...  

Nanoporous activated carbon material was produced from the waste rice husks (RHs) by precarbonizing RHs and activating with KOH. The morphology, structure, and specific surface area were investigated. The nanoporous carbon has the average pore size of 2.2 nm and high specific area of 2523.4 m2 g−1. The specific capacitance of the nanoporous carbon is calculated to be 250 F g−1at the current density of 1 A g−1and remains 80% for 198 F g−1at the current density of 20 A g−1. The nanoporous carbon electrode exhibits long-term cycle life and could keep stable capacitance till 10,000 cycles. The consistently high specific capacitance, rate capacity, and long-term cycle life ability makes it a potential candidate as electrode material for supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document