scholarly journals Enhancement of the Piezoelectric Cantilever Beam Performance via Vortex-Induced Vibration to Harvest Ocean Wave Energy

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaozhen Du ◽  
Yan Zhao ◽  
Guilin Liu ◽  
Mi Zhang ◽  
Yu Wang ◽  
...  

Renewable and sustainable energies exhibit promising performance while serving as the power supply of a wireless sensor especially located in marine waters. Various microgenerators have been developed to harvest wave energy. However, the conversion ability from a dynamic oscillating source of wave is crucial to enhance their effectiveness in practical applications. In this paper, a new piezoelectric converter system is proposed to harvest the kinetic energy from ocean waves. The vortex-induced effect in an air channel enhances the vibration performance, improving the energy harvesting efficiency. The system comprises an oscillating water column (OWC) air chamber, a bluff body, and a piezoelectric piece for electromechanical transduction. The fluid–solid–electric coupling finite element method was used to investigate the relation between the output voltage and geometrical parameters, including the size and position of the piezoelectric cantilever beam, which is based on the user-defined function of the ANSYS. It is found that the bluff body in the outlet channel above the air chamber induced high-frequency vortex shedding vibration. The regular wave rushed into the air chamber with a frequency of 0.285 Hz and extruded the air across the bluff body in the outlet channel. This incurred the fluctuation of the air pressure and excited the piezoelectric cantilever beam vibration with a high frequency of 233 Hz in the wake region. Furthermore, a continuous electrical output with a peak voltage of 6.11 V is generated, which has potential applications for the wireless sensors on the marine buoy.

2019 ◽  
Vol 83 (sp1) ◽  
pp. 976
Author(s):  
Ming Liu ◽  
Hengxu Liu ◽  
Hailong Chen ◽  
Yuanchao Chai ◽  
Liquan Wang

Author(s):  
Daniel St. Clair ◽  
Christopher Stabler ◽  
Mohammed F. Daqaq ◽  
Jian Luo ◽  
Gang Li

In this work, inspired by music playing harmonicas, we conduct a conceptual investigation of a coupled aero-electromechanical system for wind energy harvesting. The system consists of a piezoelectric cantilever unimorph structure embedded within an air chamber to mimic the vibration of the reeds in a harmonica when subjected to air flow. In principle, when wind blows into the air chamber, the air pressure in the chamber increases and bends the cantilever beam opening an air path between the chamber and the environment. When the volumetric flow rate of air past the cantilever is large enough, the energy pumped into the structure via the nonlinear pressure forces offset the intrinsic damping in the system setting the beam into self-sustained limit-cycle oscillations. These oscillations induce a periodic strain in the piezoelectric layer which produces a voltage difference that can be channeled into an electric load. Unlike traditional vibratory energy harvesters where the excitation frequency needs to match the resonant frequency of the device for efficient energy extraction, the nonlinearly coupled aero-elasto dynamics of this device guarantees autonomous vibration of the cantilever beam near its natural frequency as long as the volumetric flow rate is larger than a certain threshold. Experimental results are presented to demonstrate the ability of this device to harvest wind energy under normal wind conditions.


2021 ◽  
Vol 245 ◽  
pp. 114559
Author(s):  
Yee Yan Lim ◽  
Ricardo Vasquez Padilla ◽  
Andreas Unger ◽  
Rodrigo Barraza ◽  
Ahmed Mostafa Thabet ◽  
...  

Author(s):  
Giulio Passerotti ◽  
Alberto Alberello ◽  
Azam Dolatshah ◽  
Luke Bennetts ◽  
Otto Puolakka ◽  
...  

Abstract Ocean waves penetrate hundreds of kilometres into the ice-covered ocean. Waves fracture the level ice into small floes, herd floes, introduce warm water and overwash the floes, accelerating ice melt and causing collisions, which concurrently erodes the floes and influences the large-scale deformation. Concomitantly, interactions between waves and the sea ice cause wave energy to reduce with distance travelled into the ice cover, attenuating wave driven effects. Here a pilot experiment in the ice tank at Aalto University (Finland) is presented to discuss how the properties of irregular small amplitude (linear) waves change as they propagate through continuous model sea ice. Irregular waves with a JONSWAP spectral shape were mechanically generated with a very low initial wave steepness to avoid ice break up and maintain a consistent continuous ice cover throughout the experiments. Observations show an exponential attenuation of wave energy with distance. High frequency components attenuated more rapidly than the low frequency counterparts, in agreement with a frequency-cubed power-law. The more effective attenuation in the high frequency range induced a substantial downshift of the spectral peak, stretching the dominant wave component as it propagates in ice.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Hou ◽  
Linbing Wang ◽  
Dawei Wang ◽  
Hailu Yang ◽  
Meng Guo ◽  
...  

Green and sustainable power supply for sensors in pavement monitoring system has attracted attentions of civil engineers recently. In this paper, the piezoelectric energy harvesting technology is used to provide the power for the acceleration sensor and Radio Frequency (RF) communication. The developed piezoelectric bimorph cantilever beam is used for collecting the vibrational energy. The energy collection circuit is used to charge the battery, where the power can achieve 1.68 mW and can meet the power need of acceleration sensor for data collection and transmission in one operation cycle, that is, 32.8 seconds. Based on the piezoelectric-cantilever-beam powered sensor, the preliminary study on the IoT-based pavement monitoring platform is suggested, which provides a new applicable approach for civil infrastructure health monitoring.


2013 ◽  
Vol 569-570 ◽  
pp. 595-602 ◽  
Author(s):  
William Finnegan ◽  
Jamie Goggins

A vital aspect of ensuring the cost effectiveness of wave energy converters (WECs) is being able to monitor their performance remotely through structural health monitoring, as these devices are deployed in very harsh environments in terms of both accessibility and potential damage to the devices. The WECs are monitored through the use of measuring equipment, which is strategically placed on the device. This measured data is then compared to the output from a numerical model of the WEC under the same ocean wave conditions. Any deviations would suggest that there are problems or issues with the WEC. The development of accurate and effective numerical models is necessary to minimise the number of times the visual, or physical, inspection of a deployed WEC is required. In this paper, a numerical wave tank model is, first, validated by comparing the waves generated to those generated experimentally using the wave flume located at the National University of Ireland, Galway. This model is then extended so it is suitable for generating real ocean waves. A wave record observed at the Atlantic marine energy test site has been replicated in the model to a high level of accuracy. A rectangular floating prism is then introduced into the model in order to explore wave-structure interaction. The dynamic response of the structure is compared to a simple analytical solution and found to be in good agreement.


1985 ◽  
Vol 12 (6) ◽  
pp. 554-555 ◽  
Author(s):  
Reisaku Inoue ◽  
Masami Iwai ◽  
Masaru Yahagi ◽  
Tetsuo Yamazaki

2021 ◽  
Author(s):  
Tomoki Ikoma ◽  
Shota Hirai ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract Wave energy converters (WECs) have been extensively researched. The behaviour of the oscillating water column (OWC) in OWC WECs is extremely complex due to the interaction of waves, air, and turbines. Several problems must be overcome before such WECs can be put to practical use. One problem is that the effect of the difference in scale between a small-scale experimental model and a full-scale model is unclear. In this study, several OWC models with different scales and geometries were used in forced oscillation tests. The wave tank was 7.0 m wide, 24.0 m long, and 1.0 m deep. In the static water experiment, we measured the air pressure and water surface fluctuations in an air chamber. For the experiments, models with a box shape with an open bottom, a manifold shape with an open bottom, and a box shape with a front opening, respectively, were fabricated. Furthermore, 1/1, 1/2, and 1/4 scale models were fabricated for each shape to investigate the effects of scale and shape on the air chamber characteristics. Numerical calculations were carried out by applying linear potential theory and the results were compared with the experimental values. The results confirmed that the air chamber shape and scale affect the air pressure fluctuation and water surface fluctuation inside the OWC system.


Sign in / Sign up

Export Citation Format

Share Document