scholarly journals Evaluating the Performance of Secondary Precipitation Products through Statistical and Hydrological Modeling in a Mountainous Tropical Basin of India

2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Kolluru Venkatesh ◽  
N. Y. Krakauer ◽  
E. Sharifi ◽  
H. Ramesh

This paper investigates the performance of gridded rainfall datasets for precipitation detection and streamflow simulations in Indiaʼs Tungabhadra river basin. Sixteen precipitation datasets categorized under gauge-based, satellite-only, reanalysis, and gauge-adjusted datasets were compared statistically against the gridded Indian Meteorological Dataset (IMD) employing two categorical and three continuous statistical metrics. Further, the precipitation datasets’ performance in simulating streamflow was assessed by using the Soil and Water Assessment Tool (SWAT) hydrological model. Based on the statistical metrics, Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) furnished very good results in terms of detecting rainfall, followed by Climate Hazards Group Infrared Precipitation (CHIRP), National Centres for Environmental Prediction-Climate Forecast System Reanalysis (NCEP CFSR), Tropical Rainfall Measurement Mission (TRMM) 3B42 v7, Global Satellite Mapping of Precipitation Gauge Reanalysis v6 (GSMaP_Gauge_RNL), and Multisource Weighted Ensemble Precipitation (MSWEP) datasets which had good-to-moderate performances at a monthly time step. From the hydrological simulations, TRMM 3B42 v7, CHIRP, CHIRPS 0.05°, and GSMaP_Gauge_RNL v6 produced very good results with a high degree of correlation to observed streamflow, while Soil Moisture 2 Rain-Climate Change Initiative (SM2RAIN-CCI) dataset exhibited poor performance. From the extreme flow event analysis, it was observed that CHIRP, TRMM 3B42 v7, Global Precipitation Climatology Centre v7 (GPCC), and APHRODITE datasets captured more peak flow events and hence can be further implemented for extreme event analysis. Overall, we found that TRMM 3B42 v7, CHIRP, and CHIRPS 0.05° datasets performed better than other datasets and can be used for hydrological modeling and climate change studies in similar topographic and climatic watersheds in India.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 143
Author(s):  
Hamed Hafizi ◽  
Ali Arda Sorman

Precipitation measurement with high spatial and temporal resolution over highly elevated and complex terrain in the eastern part of Turkey is an essential task to manage the water structures in an optimum manner. The objective of this study is to evaluate the consistency and hydrologic utility of 13 Gridded Precipitation Datasets (GPDs) (CPCv1, MSWEPv2.8, ERA5, CHIRPSv2.0, CHIRPv2.0, IMERGHHFv06, IMERGHHEv06, IMERGHHLv06, TMPA-3B42v7, TMPA-3B42RTv7, PERSIANN-CDR, PERSIANN-CCS, and PERSIANN) over a mountainous test basin (Karasu) at a daily time step. The Kling-Gupta Efficiency (KGE), including its three components (correlation, bias, and variability ratio), and the Nash-Sutcliffe Efficiency (NSE) are used for GPD evaluation. Moreover, the Hanssen-Kuiper (HK) score is considered to evaluate the detectability strength of selected GPDs for different precipitation events. Precipitation frequencies are evaluated considering the Probability Density Function (PDF). Daily precipitation data from 23 meteorological stations are provided as a reference for the period of 2015–2019. The TUW model is used for hydrological simulations regarding observed discharge located at the outlet of the basin. The model is calibrated in two ways, with observed precipitation only and by each GPD individually. Overall, CPCv1 shows the highest performance (median KGE; 0.46) over time and space. MSWEPv2.8 and CHIRPSv2.0 deliver the best performance among multi-source merging datasets, followed by CHIRPv2.0, whereas IMERGHHFv06, PERSIANN-CDR, and TMPA-3B42v7 show poor performance. IMERGHHLv06 is able to present the best performance (median KGE; 0.17) compared to other satellite-based GPDs (PERSIANN-CCS, PERSIANN, IMERGHHEv06, and TMPA-3B42RTv7). ERA5 performs well both in spatial and temporal validation compared to satellite-based GPDs, though it shows low performance in producing a streamflow simulation. Overall, all gridded precipitation datasets show better performance in generating streamflow when the model is calibrated by each GPD separately.


2020 ◽  
Vol 38 (2A) ◽  
pp. 265-276
Author(s):  
Mahmoud S. Al- Khafaji ◽  
Rana D. Al- Chalabi

The impact of climate change on stream flow and sediment yield in Darbandikhan Watershed is an important challenge facing the water resources in Diyala River, Iraq. This impact was investigated using five Global Circulation Models (GCM) based climate change projection models from the A1B scenario of medium emission. The Soil and Water Assessment Tool (SWAT) was used to compute the temporal and spatial distribution of streamflow and sediment yield of the study area for the period 1984 to 2050. The daily-observed flow recorded in Darbandikhan Dam for the period from 1984 to 2013 was used as a base period for future projection. The initial results of SWAT were calibrated and validated using SUFI-2 of the SWAT-CUP program in daily time step considering the values of the Nash-Sutcliffe Efficiency (NSE) coefficient of determination (R2) as a Dual objective function. Results of NSE and R2 during the calibration (validation) periods were equal to 0.61 and 0.62(0.53 and 0.68), respectively. In addition, the average future prediction for the five climate models indicated that the average yearly flow and sediment yield in the watershed would decrease by about 49% and 44%, respectively, until the year 2050 compared with these of the base period from 1984 to 2013. Moreover, spatial analysis shows that 89.6 % and 90 % of stream flow and sediment come from the Iranian part of Darbandikhan watershed while the remaining small percent comes from Iraq, respectively. However, the middle and southern parts of Darbandikhan Watershed contribute by most of the stream...


2016 ◽  
Vol 4 (8) ◽  
pp. 161-173
Author(s):  
Stephen Kibe Rwigi ◽  
Jeremiah N. Muthama ◽  
Alfred O. Opere ◽  
Franklin J. Opijah ◽  
Francis N. Gichuki

Potential impacts of climate change on surface water yields over the Sondu River basin in the western region of Kenya were analysed using the Soil and Water Assessment Tool (SWAT) model with climate input data obtained from the fourth generation coupled Ocean-Atmosphere European Community Hamburg Model (ECHAM4) using the Providing Regional Climates for Impacts Studies (PRECIS) model. Daily time step regional climate scenarios at a spatial grid resolution of 0.44Ëš over the Eastern Africa region were matched to the Sondu river basin and used to calibrate and validate the SWAT model.Analysis of historical and projected rainfall over the basin strongly indicated that the climate of the area will significantly change with wetter climates being experienced by 2030 and beyond. Projected monthly rainfall distribution shows increasing trends in the relatively dry DJF and SON seasons while showing decreasing trends in the relatively wet MAM and JJA seasons. Potential changes in water yields resulting from climate change were computed by comparing simulated yields under climate change scenarios with those simulated under baseline conditions. There was evidence of substantial increases in water yields ranging between 88% and 110% of the baseline yields by 2030 and 2050 respectively. Although simulated water yields are subject to further verification from observed values, this study has provided useful information about potential changes in water yields as a result of climate change over the Sondu River basin and in similar basins in this region.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sidong Zeng ◽  
Chesheng Zhan ◽  
Fubao Sun ◽  
Hong Du ◽  
Feiyu Wang

Quantifying the effects of climate change and human activities on runoff changes is the focus of climate change and hydrological research. This paper presents an integrated method employing the Budyko-based Fu model, hydrological modeling, and climate elasticity approaches to separate the effects of the two driving factors on surface runoff in the Luan River basin, China. The Budyko-based Fu model and the double mass curve method are used to analyze runoff changes during the period 1958~2009. Then two types of hydrological models (the distributed Soil and Water Assessment Tool model and the lumped SIMHYD model) and seven climate elasticity methods (including a nonparametric method and six Budyko-based methods) are applied to estimate the contributions of climate change and human activities to runoff change. The results show that all quantification methods are effective, and the results obtained by the nine methods are generally consistent. During the study period, the effects of climate change on runoff change accounted for 28.3~46.8% while those of human activities contributed with 53.2~71.7%, indicating that both factors have significant effects on the runoff decline in the basin, and that the effects of human activities are relatively stronger than those of climate change.


2012 ◽  
Vol 16 (2) ◽  
pp. 489-500 ◽  
Author(s):  
T. Cohen Liechti ◽  
J. P. Matos ◽  
J.-L. Boillat ◽  
A. J. Schleiss

Abstract. In the framework of the African DAms ProjecT (ADAPT), an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin. Three operational and acknowledged high resolution satellite derived estimates: the Tropical Rainfall Measuring Mission product 3B42 (TRMM 3B42), the Famine Early Warning System product 2.0 (FEWS RFE2.0) and the National Oceanic and Atmospheric Administration/Climate Prediction Centre (NOAA/CPC) morphing technique (CMORPH) are analyzed in terms of spatial and temporal repartition of the precipitations. They are compared to ground data for the wet seasons of the years 2003 to 2009 on a point to pixel basis at daily, 10-daily and monthly time steps and on a pixel to pixel basis for the wet seasons of the years 2003 to 2007 at monthly time steps. The general North-South gradient of precipitation is captured by all the analyzed products. Regarding the spatial heterogeneity, FEWS pixels are much more inter-correlated than TRMM and CMORPH pixels. For a rainfall homogeneity threshold criterion of 0.5 global mean correlation coefficient, the area of each sub-basin should not exceed a circle of 2.5° latitude/longitude radius for FEWS and a circle of 0.75° latitude/longitude radius for TRMM and CMORPH considering rectangular meshes. In terms of reliability, the correspondence of all estimates with ground data increases with the time step chosen for the analysis. The volume ratio computation indicates that CMORPH is overestimating the rainfall by nearly 50%. The statistics of TRMM and FEWS estimates show quite similar results. Due to its lower inter-correlation and longer data set, the TRMM 3B42 product is chosen as input for the hydraulic-hydrologic model of the basin. Further work will focus on the calibration of the hydraulic-hydrological model of the basin, including the major existing hydraulic structures with their operation rules.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 859 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Constanze Leemhuis ◽  
Larisa Seregina ◽  
Roderick van der Linden

This article illustrates the impact of potential future climate scenarios on water quantity in time and space for an East African floodplain catchment surrounded by mountainous areas. In East Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to year-round water availability and fertile soils. These advantageous agricultural conditions might be hampered through climate change impacts. Additionally, water-related risks, like droughts and flooding events, are likely to increase. Hence, this study investigates future climate patterns and their impact on water resources in one production cluster in Tanzania. To account for these changes, a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analyzed to investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios. The semi-distributed Soil and Water Assessment Tool (SWAT) was utilized to analyze the impacts on water resources according to all scenarios. Modeling results indicate increasing temperatures, especially in the hot dry season, intensifying the distinctive features of the dry and rainy season. This consequently aggravates hydrological extremes, such as more-pronounced flooding and decreasing low flows. Overall, annual averages of water yield and surface runoff increase up to 61.6% and 67.8%, respectively, within the bias-corrected scenario simulations, compared to the historical simulations. However, changes in precipitation among the analyzed scenarios vary between −8.3% and +22.5% of the annual averages. Hydrological modeling results also show heterogeneous spatial patterns inside the catchment. These spatio-temporal patterns indicate the possibility of an aggravation for severe floods in wet seasons, as well as an increasing drought risk in dry seasons across the scenario simulations. Apart from that, the discharge peak, which is crucial for the flood recession agriculture in the floodplain, is likely to shift from April to May from the 2020s onwards.


Author(s):  
Mohamed Aboelnour ◽  
Margaret W. Gitau ◽  
Bernard A. Engel

The change in both streamflow and baseflow in urban catchments has received significant attention in the latest decades as a result of their drastic variability. In this research, effects of climate variation and dynamics of land use are measured separately and in combination on streamflow and baseflow in the Little Eagle Creek (LEC) watershed (Indianapolis, Indiana). These effects are examined using land use maps, statistical tests, and hydrological modeling. Transition matrix analysis was used to investigate the change in land use between 1992 and 2011. Temporal trends and changes in meteorological data were evaluated from 1980-2017 using the Mann-Kendall test. Changes in streamflow and baseflow were assessed using the Soil and Water Assessment Tool (SWAT) hydrological model using multiple scenarios that varied in land use and climate change. Evaluation of the model outputs showed streamflow and baseflow in LEC are well represented using SWAT; however, comparing the calibration and validation period showed SWAT performs better for the calibration. During 1992-2011, roughly 30% of the watershed experienced change, typically cultivated agricultural areas became urbanized. Baseflow is significantly affected by the observed urbanization; however, the combination of land and climate variability has a larger effect on the baseflow in LEC. Generally, the variability in the baseflow and streamflow appears to be heavily driven by the response to climate change in comparison to variability due to altered land use. The results reported herein expand the current understanding of variation in hydrological components, and provides useful information for management planning regarding water resources, as well as water and soil conservation in urban watersheds in Indiana and beyond.


2011 ◽  
Vol 8 (4) ◽  
pp. 8173-8201 ◽  
Author(s):  
T. Cohen Liechti ◽  
J. P. Matos ◽  
J.-L. Boillat ◽  
A. J. Schleiss

Abstract. In the framework of the African Dams ProjecT (ADAPT), an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin. Three operational and acknowledged high resolution satellite derived estimates: the Tropical Rainfall Measuring Mission product 3B42 (TRMM 3B42), the Famine Early Warning System product 2.0 (FEWS RFE2.0) and the National Oceanic and Atmospheric Administration/Climate Prediction Centre (NOAA/CPC) morphing technique (CMORPH) are analyzed in terms of spatial and temporal repartition of the precipitations. They are compared to ground data for the wet seasons of the years 2003 to 2009 on a point to pixel basis at daily, 10-daily and monthly time steps and on a pixel to pixel basis for the wet seasons of the years 2003 to 2007 at monthly time steps. The general North-South gradient of precipitation is captured by all the analyzed products. Regarding the spatial heterogeneity, FEWS pixels are much more inter-correlated than TRMM and CMORPH pixels. For a rainfall homogeneity threshold criterion of 0.5 global mean correlation coefficient, the area of each subbasin should not exceed a circle of 2.5° latitude/longitude radius for FEWS and a circle of 0.75° latitude/longitude radius for TRMM and CMORPH considering rectangular mesh. In terms of reliability, the correspondence of all estimates with ground data increases with the time step chosen for the analysis. The volume ratio computation indicates that CMORPH is overestimating by nearly 1.5 times the rainfall. The statistics of TRMM and FEWS estimates show quite similar results. Due to the its lower inter-correlation and longer data set, the TRMM 3B42 product is chosen as input for the hydraulic-hydrologic model of the basin. Further work will focus on the calibration of the hydraulic-hydrological model of the basin, including the major existing hydraulic structures with their operation rules.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 271 ◽  
Author(s):  
Ameer Muhammad ◽  
Grey R. Evenson ◽  
Fisaha Unduche ◽  
Tricia A. Stadnyk

The Prairie Pothole Region (PPR) is known for its hydrologically complex landscape with a large number of pothole wetlands. However, most watershed-scale hydrologic models that are applied in this region are incapable of representing the dynamic nature of contributing area and fill-spill processes affected by pothole wetlands. The inability to simulate these processes represents a critical limitation for operators and flood forecasters and may hinder the management of large reservoirs. We used a modified version of the soil water assessment tool (SWAT) model capable of simulating the dynamics of variable contributing areas and fill-spill processes to assess the impact of climate change on upstream inflows into the Shellmouth reservoir (also called Lake of the Prairie), which is an important reservoir built to provide multiple purposes, including flood and drought mitigation. We calibrated our modified SWAT model at a daily time step using SUFI-2 algorithm within SWAT-CUP for the period 1991–2000 and validated for 2005–2014, which gave acceptable performance statistics for both the calibration (KGE = 0.70, PBIAS = −13.5) and validation (KGE = 0.70, PBIAS = 21.5) periods. We then forced the calibrated model with future climate projections using representative concentration pathways (RCPs; 4.5, 8.5) for the near (2011–2040) and middle futures (2041–2070) of multiple regional climate models (RCMs). Our modeling results suggest that climate change will lead to a two-fold increase in winter streamflow, a slight increase in summer flow, and decrease spring peak flows into the Shellmouth reservoir. Investigating the impact of climate change on the operation of the Shellmouth reservoir is critically important because climate change could present significant challenges to the operation and management of the reservoir.


Sign in / Sign up

Export Citation Format

Share Document