scholarly journals Impact of Climate Change on Water Resources in the Kilombero Catchment in Tanzania

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 859 ◽  
Author(s):  
Kristian Näschen ◽  
Bernd Diekkrüger ◽  
Constanze Leemhuis ◽  
Larisa Seregina ◽  
Roderick van der Linden

This article illustrates the impact of potential future climate scenarios on water quantity in time and space for an East African floodplain catchment surrounded by mountainous areas. In East Africa, agricultural intensification is shifting from upland cultivation into the wetlands due to year-round water availability and fertile soils. These advantageous agricultural conditions might be hampered through climate change impacts. Additionally, water-related risks, like droughts and flooding events, are likely to increase. Hence, this study investigates future climate patterns and their impact on water resources in one production cluster in Tanzania. To account for these changes, a regional climate model ensemble of the Coordinated Regional Downscaling Experiment (CORDEX) Africa project was analyzed to investigate changes in climatic patterns until 2060, according to the RCP4.5 (representative concentration pathways) and RCP8.5 scenarios. The semi-distributed Soil and Water Assessment Tool (SWAT) was utilized to analyze the impacts on water resources according to all scenarios. Modeling results indicate increasing temperatures, especially in the hot dry season, intensifying the distinctive features of the dry and rainy season. This consequently aggravates hydrological extremes, such as more-pronounced flooding and decreasing low flows. Overall, annual averages of water yield and surface runoff increase up to 61.6% and 67.8%, respectively, within the bias-corrected scenario simulations, compared to the historical simulations. However, changes in precipitation among the analyzed scenarios vary between −8.3% and +22.5% of the annual averages. Hydrological modeling results also show heterogeneous spatial patterns inside the catchment. These spatio-temporal patterns indicate the possibility of an aggravation for severe floods in wet seasons, as well as an increasing drought risk in dry seasons across the scenario simulations. Apart from that, the discharge peak, which is crucial for the flood recession agriculture in the floodplain, is likely to shift from April to May from the 2020s onwards.

2021 ◽  
Vol 13 (17) ◽  
pp. 9689
Author(s):  
Tewekel Melese Gemechu ◽  
Hongling Zhao ◽  
Shanshan Bao ◽  
Cidan Yangzong ◽  
Yingying Liu ◽  
...  

Changes in hydrological cycles and water resources will certainly be a direct consequence of climate change, making the forecast of hydrological components essential for water resource assessment and management. This research was thus carried out to estimate water balance components and water yield under current and future climate change scenarios and trends in the Guder Catchment of the Upper Blue Nile, Ethiopia, using the soil and water assessment tool (SWAT). Hydrological modeling was efficaciously calibrated and validated using the SUFI-2 algorithm of the SWAT model. The results showed that water yield varied from 926 mm to 1340 mm per year (1986–2016). Regional climate model (RCM) data showed, under representative concentration pathways (RCP 8.5), that the precipitation will decrease by up to 14.4% relative to the baseline (1986–2016) precipitation of 1228 mm/year, while the air temperature will rise under RCP 8.5 by +4.4 °C in the period from 2057 to 2086, possibly reducing the future basin water yield output, suggesting that the RCP 8.5 prediction will be warmer than RCP 4.5. Under RCP 8.5, the total water yield from 2024 to 2086 may be reduced by 3.2 mm per year, and a significant trend was observed. Local government agencies can arrange projects to solve community water-related issues based on these findings.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


Author(s):  
Kuo Li ◽  
Jie Pan

Abstract. Climate change has been a hotspot of scientific research in the world for decades, which caused serious effects of agriculture, water resources, ecosystem, environment, human health and so on. In China, drought accounts for almost 50 % of the total loss among all the meteorological disasters. In this article the interpolated and corrected precipitation of one GCM (HadGEM2-ES) output under four emission scenarios (RCP2.6, 4.5, 6.0, 8.5) were used to analyze the drought. The standardized precipitation index (SPI) calculated with these data was used to assess the climate change impact on droughts from meteorological perspectives. Based on five levels of SPI, an integrated index of drought hazard (IIDH) was established, which could explain the frequency and intensity of meteorological drought in different regions. According to yearbooks of different provinces, 15 factors have been chosen which could represent the impact of drought on human being, crops, water resources and economy. Exposure index, sensitivity index and adaptation index have been calculated in almost 2400 counties and vulnerability of drought has been evaluated. Based on hazard and vulnerability evaluation of drought, risk assessment of drought in China under the RCP2.6, 4.5, 6.0, 8.5 emission scenarios from 2016 to 2050 has been done. Results from such a comprehensive study over the whole country could be used not only to inform on potential impacts for specific sectors but also can be used to coordinate adaptation/mitigation strategies among different sectors/regions by the central government.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2141 ◽  
Author(s):  
Saddique ◽  
Usman ◽  
Bernhofer

Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change.


2020 ◽  
Vol 7 (8) ◽  
pp. 191957 ◽  
Author(s):  
Muhammad Izhar Shah ◽  
Asif Khan ◽  
Tahir Ali Akbar ◽  
Quazi K. Hassan ◽  
Asim Jahangir Khan ◽  
...  

The Upper Indus Basin (UIB) is a major source of supplying water to different areas because of snow and glaciers melt and is also enduring the regional impacts of global climate change. The expected changes in temperature, precipitation and snowmelt could be reasons for further escalation of the problem. Therefore, estimation of hydrological processes is critical for UIB. The objectives of this paper were to estimate the impacts of climate change on water resources and future projection for surface water under different climatic scenarios using soil and water assessment tool (SWAT). The methodology includes: (i) development of SWAT model using land cover, soil and meteorological data; (ii) calibration of the model using daily flow data from 1978 to 1993; (iii) model validation for the time 1994–2003; (iv) bias correction of regional climate model (RCM), and (v) utilization of bias-corrected RCM for future assessment under representative concentration pathways RCP4.5 and RCP8.5 for mid (2041–2070) and late century (2071–2100). The results of the study revealed a strong correlation between simulated and observed flow with R 2 and Nash–Sutcliff efficiency (NSE) equal to 0.85 each for daily flow. For validation, R 2 and NSE were found to be 0.84 and 0.80, respectively. Compared to baseline period (1976–2005), the result of RCM showed an increase in temperature ranging from 2.36°C to 3.50°C and 2.92°C to 5.23°C for RCP4.5 and RCP8.5 respectively, till the end of the twenty-first century. Likewise, the increase in annual average precipitation is 2.4% to 2.5% and 6.0% to 4.6% (mid to late century) under RCP4.5 and RCP8.5, respectively. The model simulation results for RCP4.5 showed increase in flow by 19.24% and 16.78% for mid and late century, respectively. For RCP8.5, the increase in flow is 20.13% and 15.86% during mid and late century, respectively. The model was more sensitive towards available moisture and snowmelt parameters. Thus, SWAT model could be used as effective tool for climate change valuation and for sustainable management of water resources in future.


GeoScape ◽  
2021 ◽  
Vol 15 (2) ◽  
pp. 159-172
Author(s):  
Umidkhon Uzbekov ◽  
Bakhtiyor Pulatov ◽  
Bokhir Alikhanov ◽  
Alim Pulatov

Abstract Climate change affects the environment and human life across the planet and it is expected that the negative consequences will be large, especially in developing countries, such as Uzbekistan. The objective of this study was to predict the impact of future climate change on the streamflow of Ugam watershed (Chirchik River Basin (CRB)) using the Soil and Water Assessment Tool (SWAT). The outputs of Coupled Model Intercomparison Project Phase 5 (CMIP5), in combination with Representative Concentration Pathway 8.5, were used as future climate records for the period 2019−2048. The SWAT model was calibrated and validated for the streamflow from Ugam watershed through using the observed daily flow data from 2007 to 2011. The calibrated SWAT model was used to simulate the impact of future climate change on streamflow in the Ugam River for 2019−2048. The results show that the stream discharge is expected to decrease by approximately 42% within thirty years, with a 1.4 °C increase in temperature and 286 mm decrease in precipitation. The peak point for the future period is 40.32 m3 /s in 2037 whereas the lowest discharge, predicted for 2048, accounts for 22.54 m3 /s. Our study enables to understand the impact of climate change on water resources in the Ugam river and to increase the adaptive capacity of water users and managers in the region.


2016 ◽  
Vol 9 (1) ◽  
pp. 15-27
Author(s):  
Proloy Deb ◽  
S. Babel

An investigation was carried out to assess the impacts of climate change on rainfed maize yield using a yield response to water stress model (AquaCrop) and to identify suitable adaptation options to minimize the negative impacts on maize yield in East Sikkim, North East India. Crop management and yield data was collected from the field experimental plots for calibration and validation of the model for the study area. The future climate data was developed for two IPCC emission scenarios A2 and B2 based on the global climate model HadCM3 with downscaling of climate to finer spatial resolution using the statistical downscaling model, SDSM. The impact study revealed that there is an expected reduction in maize yield of 12.8, 28.3 and 33.9% for the A2 scenario and 7.5, 19.9 and 29.9% for the B2 scenario during 2012-40, 2041-70 and 2071-99 respectively compared to the average yield simulated during the period of 1961-1990 with observed climate data. The maize yield of same variety under future climate can be maintained or improved from current level by changing planting dates, providing supplement irrigation and managing optimum nutrient.Journal of Hydrology and Meteorology, Vol. 9(1) 2015, p.15-27


Author(s):  
Jamal H. Ougahi ◽  
Mark E. J. Cutler ◽  
Simon J. Cook

Abstract Climate change has implications for water resources by increasing temperature, shifting precipitation patterns and altering the timing of snowfall and glacier melt, leading to shifts in the seasonality of river flows. Here, the Soil & Water Assessment Tool was run using downscaled precipitation and temperature projections from five global climate models (GCMs) and their multi-model mean to estimate the potential impact of climate change on water balance components in sub-basins of the Upper Indus Basin (UIB) under two emission (RCP4.5 and RCP8.5) and future (2020–2050 and 2070–2100) scenarios. Warming of above 6 °C relative to baseline (1974–2004) is projected for the UIB by the end of the century (2070–2100), but the spread of annual precipitation projections among GCMs is large (+16 to −28%), and even larger for seasonal precipitation (+91 to −48%). Compared to the baseline, an increase in summer precipitation (RCP8.5: +36.7%) and a decrease in winter precipitation were projected (RCP8.5: −16.9%), with an increase in average annual water yield from the nival–glacial regime and river flow peaking 1 month earlier. We conclude that predicted warming during winter and spring could substantially affect the seasonal river flows, with important implications for water supplies.


Sign in / Sign up

Export Citation Format

Share Document