scholarly journals Impact of Node Density on the QoS Parameters of Routing Protocols in Opportunistic Networks for Smart Spaces

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Puneet Garg ◽  
Ashutosh Dixit ◽  
Preeti Sethi ◽  
Plácido Rogerio Pinheiro

The need and importance of Smart Spaces have been potentially realized by the researchers due to its applicability in the current lifestyle. Opportunistic network, a successor of mobile ad hoc networks and a budding technology of network, is a best-suited technology for implementing Smart Spaces due to its wide range of applications in real-life scenarios ranging from building smart cities to interplanetary communication. There are numerous routing protocols which are available in opportunistic network, each having their pros and cons; however, no research till the time of listing has been done which can quantitatively demonstrate the maximum performance of these protocols and standardize the comparison of opportunistic routing protocols which has been a major cause of ambiguous performance evaluation studies. The work here presents a categorical view of the opportunistic routing protocol family and thereby compares and contrasts the various simulators suited for their simulation. Thereafter, the most popular protocols (selecting at least one protocol from each category) are compared based on node density on as many as 8 standard performance metrics using ONE simulator to observe their scalability, realism, and comparability. The work concludes by presenting the merits and demerits of each of the protocols discussed as well as specifying the best routing protocol among all the available protocols for Smart Spaces with maximum output. It is believed that the results achieved by the implemented methodology will help future researchers to choose appropriate routing protocol to delve into their research under different scenarios.

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8058
Author(s):  
Christian E. Galarza ◽  
Jonathan M. Palma ◽  
Cecilia F. Morais ◽  
Jaime Utria ◽  
Leonardo P. Carvalho ◽  
...  

This paper proposes a new theoretical stochastic model based on an abstraction of the opportunistic model for opportunistic networks. The model is capable of systematically computing the network parameters, such as the number of possible routes, the probability of successful transmission, the expected number of broadcast transmissions, and the expected number of receptions. The usual theoretical stochastic model explored in the methodologies available in the literature is based on Markov chains, and the main novelty of this paper is the employment of a percolation stochastic model, whose main benefit is to obtain the network parameters directly. Additionally, the proposed approach is capable to deal with values of probability specified by bounded intervals or by a density function. The model is validated via Monte Carlo simulations, and a computational toolbox (R-packet) is provided to make the reproduction of the results presented in the paper easier. The technique is illustrated through a numerical example where the proposed model is applied to compute the energy consumption when transmitting a packet via an opportunistic network.


In recent time, with the fast development of the mobile system, Mobile Ad-hoc Networks (MANETs) have been fucus studied and applied in many areas such as rescue, military, medical applications and smart cities. Due to the characteristics of MANETs, routing protocols must be designed to be flexible, energy-efficient and highly performance achievable. Increasing network lifetime by reducing energy consumption level is a major method in the design of saving energy routing protocols in MANETs. In this study, we propose an improved routing protocol from AODV with a new cost function, applied to MANETs. The simulation results show, our proposed protocol saves energy consumption, increases network life, packet delivery rates, and improves performance over AODV


2018 ◽  
Vol 8 (11) ◽  
pp. 2215 ◽  
Author(s):  
Eun Lee ◽  
Dong Seo ◽  
Yun Chung

In opportunistic networks such as delay tolerant network, a message is delivered to a final destination node using the opportunistic routing protocol since there is no guaranteed routing path from a sending node to a receiving node and most of the connections between nodes are temporary. In opportunistic routing, a message is delivered using a ‘store-carry-forward’ strategy, where a message is stored in the buffer of a node, a node carries the message while moving, and the message is forwarded to another node when a contact occurs. In this paper, we propose an efficient opportunistic routing protocol using the history of delivery predictability of mobile nodes. In the proposed routing protocol, if a node receives a message from another node, the value of the delivery predictability of the receiving node to the destination node for the message is managed, which is defined as the previous delivery predictability. Then, when two nodes contact, a message is forwarded only if the delivery predictability of the other node is higher than both the delivery predictability and previous delivery predictability of the sending node. Performance analysis results show that the proposed protocol performs best, in terms of delivery ratio, overhead ratio, and delivery latency for varying buffer size, message generation interval, and the number of nodes.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Aarti Munjal ◽  
Tracy Camp ◽  
Nils Aschenbruck

A phenomenal increase in the number of wireless devices has led to the evolution of several interesting and challenging research problems in opportunistic networks. For example, the random waypoint mobility model, an early, popular effort to model mobility, involves generatingrandommovement patterns. Previous research efforts, however, validate that movement patterns are not random; instead, human mobility is predictable to some extent. Since the performance of a routing protocol in an opportunistic network is greatly improved if the movement patterns of mobile users can be somewhat predicted in advance, several research attempts have been made to understand human mobility. The solutions developed use our understanding of movement patterns to predict the future contact probability for mobile nodes. In this work, we summarize the changing trends in modeling human mobility asrandommovements to the current research efforts that model human walks in a more predictable manner. Mobility patterns significantly affect the performance of a routing protocol. Thus, the changing trend in modeling mobility has led to several changes in developing routing protocols for opportunistic networks. For example, the simplest opportunistic routing protocol forwards a received packet to a randomly selected neighbor. With predictable mobility, however, routing protocols can use the expected contact information between a pair of mobile nodes in making forwarding decisions. In this work, we also describe the previous and current research efforts in developing routing protocols for opportunistic networks.


2021 ◽  
Author(s):  
Khuram Khalid

In this thesis, a history-based energy-efficient routing protocol (called AEHBPR) for opportunistic networks (OppNets) is proposed, which saves the energy consumption by avoiding unnecessary packets transmission in the network and by clearing the buffer of nodes carrying the copies of the already delivered packets. The proposed AEHBPR protocol is evaluated using the Opportunistic NEtwork (ONE) simulator with both synthetic and real mobility traces, showing a superior performance compared to the History-Based Prediction for Routing (HBPR) protocol and AEProphet, in terms of average remaining energy, number of dead nodes, number of delivered messages, and overhead ratio, where AEProphet is the ProPHet routing protocol for OppNets on which the same energy-aware mechanism has been implemented.


This article analyzes and compares the service quality metrics in reactive routing protocols AODV and DSR in VANET. Through the revision of the recorded information we study the characteristics, classification, applications and different traffic models. All these parameters are taken into account in the modelling of vehicular traffic in the downtown of Loja City. In order to get the corresponding results, three different scenarios each with a different node density have been created. According to the collected data, it is possible to verify which routing protocol is the most suitable for the Ad-Hoc networks proposed in this study.


2021 ◽  
Vol 9 (2) ◽  
pp. 452-457
Author(s):  
Puneet Garg, Et. al.

Opportunistic Networks (OppNets) are becoming the prime interest for researchers day-by-day due to the large scope of further research into it. An opportunistic network is used to transmit data in an environment of intermittent connectivity. OppNet offers a variety of routing protocols based on different strategies. Each protocol has some pros and cons. Among the available ones, Fresh Routing Protocol and Spray-and-wait Routing Protocol are the most efficient routing protocols in terms of performance during data transmission. This paper aims to compare these two different routing protocols through simulation on the ground of standard performance metrics. It is believed that this simulation comparison will help upcoming researchers in the selection of appropriate routing protocol as per their requirement


2021 ◽  
Author(s):  
Khuram Khalid

In this thesis, a history-based energy-efficient routing protocol (called AEHBPR) for opportunistic networks (OppNets) is proposed, which saves the energy consumption by avoiding unnecessary packets transmission in the network and by clearing the buffer of nodes carrying the copies of the already delivered packets. The proposed AEHBPR protocol is evaluated using the Opportunistic NEtwork (ONE) simulator with both synthetic and real mobility traces, showing a superior performance compared to the History-Based Prediction for Routing (HBPR) protocol and AEProphet, in terms of average remaining energy, number of dead nodes, number of delivered messages, and overhead ratio, where AEProphet is the ProPHet routing protocol for OppNets on which the same energy-aware mechanism has been implemented.


2019 ◽  
Vol 4 (12) ◽  
pp. 155-158
Author(s):  
Sujan Chandra Roy ◽  
Farhana Enam ◽  
Md. Ashraful Islam

Delay-Tolerant Networks (DTNs) are part of Opportunistic networks. In the case of opportunistic networks, the joined node of a network can have zero or partial knowledge about other nodes in a network. For this reason, the evident information towards the nodes in the existing network is most difficult to collect for forwarding the message. The application of Opportunistic networks is where have a high tolerance for long delays, high error rate, etc. DTNs are also sparse dynamic Ad-hoc networks were source to destination path does not present all-time for successfully message transmission. As DTN has no end-to-end path for message transmission source to destination node so, the routing design is so sophisticated. The social-based routing protocol is developed to improve the routing mechanism by focusing on social behavior and the interaction with the nodes of a network. Consequently, the performance analysis of existing several DTN routing protocols represents a significant role in designing or developing a new routing protocol for a specific scenario. This article investigates the execution of ordinary routing protocols of DTNs such as Epidemic, Binary Spray and Wait (BSNW), including two social-based routing protocols such as Scorp and dLife using Opportunistic Network Environment (ONE) simulator. The performance of these routing protocols is measured based on delivery ratio and average hop count with inevitable simulation settings. From the simulation result, it is condensed that for higher delivery ratio, BSNW is best, and for average hop count, dLife is the best routing protocol.  


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 455
Author(s):  
Mohammed Al-kahtani ◽  
Lutful Karim ◽  
Nargis Khan

Routing or forwarding information, such as the location of incidents and victims in a disaster, is significantly important for quick and accurate incident response. However, forwarding such information in disaster areas has been a challenging task for the Wireless Sensor Network as existing networks are affected (destroyed or overused) the disaster. Opportunistic information forwarding can play a vital role in such circumstances. Existing opportunistic routing protocols require huge message transmissions for cluster restoration, which is not energy efficient and results in packet loss. Hence, this paper introduces an energy efficient and reliable opportunistic density cluster-based routing protocol that opportunistically transmits data using a density-clustering protocol for emergency and disaster situations. Simulation results show that the proposed protocol outperforms some existing and well-known routing protocols in terms of network energy consumption, throughput and successful data transmissions.


Sign in / Sign up

Export Citation Format

Share Document