scholarly journals YOLO-Highway: An Improved Highway Center Marking Detection Model for Unmanned Aerial Vehicle Autonomous Flight

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhiwei Zhao ◽  
Jianfeng Han ◽  
Lili Song

Automatic visual navigation flight of an unmanned aerial vehicle (UAV) plays an important role in the highway maintenance field. Automatic highway center marking detection is the most important part of the visual navigation flight of a UAV. In this study, the UAV-viewed highway data are collected from the UAV perspective. This paper proposes a model named the YOLO-Highway that uses an improved form of the You Only Look Once (YOLO) model to enhance the real-time detection of highway marking problems. The proposed model is mainly designed by optimizing the network structure and the loss function of the original YOLOv3 model. The proposed model is verified by the experiments using the highway center marking dataset, and the results show that the average precision (AP) of the trained model is 82.79%, and the frames per second (FPS) is 25.71 f/s. In comparison with the original YOLOv3 model, the detection accuracy of the proposed model is improved by 7.05%, and its speed is improved by 5.29 f/s. Moreover, the proposed model had stronger environmental adaptability and better detection precision and speed than the original model in complex highway scenarios. The experimental results show that the proposed YOLO-Highway model can accurately detect the highway center markings in real-time and has high robustness to changes in different environmental conditions. Therefore, the YOLO-Highway model can meet the real-time requirements of the highway center marking detection.

2020 ◽  
Vol 12 (1) ◽  
pp. 182 ◽  
Author(s):  
Lingxuan Meng ◽  
Zhixing Peng ◽  
Ji Zhou ◽  
Jirong Zhang ◽  
Zhenyu Lu ◽  
...  

Unmanned aerial vehicle (UAV) remote sensing and deep learning provide a practical approach to object detection. However, most of the current approaches for processing UAV remote-sensing data cannot carry out object detection in real time for emergencies, such as firefighting. This study proposes a new approach for integrating UAV remote sensing and deep learning for the real-time detection of ground objects. Excavators, which usually threaten pipeline safety, are selected as the target object. A widely used deep-learning algorithm, namely You Only Look Once V3, is first used to train the excavator detection model on a workstation and then deployed on an embedded board that is carried by a UAV. The recall rate of the trained excavator detection model is 99.4%, demonstrating that the trained model has a very high accuracy. Then, the UAV for an excavator detection system (UAV-ED) is further constructed for operational application. UAV-ED is composed of a UAV Control Module, a UAV Module, and a Warning Module. A UAV experiment with different scenarios was conducted to evaluate the performance of the UAV-ED. The whole process from the UAV observation of an excavator to the Warning Module (350 km away from the testing area) receiving the detection results only lasted about 1.15 s. Thus, the UAV-ED system has good performance and would benefit the management of pipeline safety.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3958
Author(s):  
Seongkyun Han ◽  
Jisang Yoo ◽  
Soonchul Kwon

Vehicle detection is an important research area that provides background information for the diversity of unmanned-aerial-vehicle (UAV) applications. In this paper, we propose a vehicle-detection method using a convolutional-neural-network (CNN)-based object detector. We design our method, DRFBNet300, with a Deeper Receptive Field Block (DRFB) module that enhances the expressiveness of feature maps to detect small objects in the UAV imagery. We also propose the UAV-cars dataset that includes the composition and angular distortion of vehicles in UAV imagery to train our DRFBNet300. Lastly, we propose a Split Image Processing (SIP) method to improve the accuracy of the detection model. Our DRFBNet300 achieves 21 mAP with 45 FPS in the MS COCO metric, which is the highest score compared to other lightweight single-stage methods running in real time. In addition, DRFBNet300, trained on the UAV-cars dataset, obtains the highest AP score at altitudes of 20–50 m. The gap of accuracy improvement by applying the SIP method became larger when the altitude increases. The DRFBNet300 trained on the UAV-cars dataset with SIP method operates at 33 FPS, enabling real-time vehicle detection.


2021 ◽  
Vol 13 (21) ◽  
pp. 4377
Author(s):  
Long Sun ◽  
Jie Chen ◽  
Dazheng Feng ◽  
Mengdao Xing

Unmanned aerial vehicle (UAV) is one of the main means of information warfare, such as in battlefield cruises, reconnaissance, and military strikes. Rapid detection and accurate recognition of key targets in UAV images are the basis of subsequent military tasks. The UAV image has characteristics of high resolution and small target size, and in practical application, the detection speed is often required to be fast. Existing algorithms are not able to achieve an effective trade-off between detection accuracy and speed. Therefore, this paper proposes a parallel ensemble deep learning framework for unmanned aerial vehicle video multi-target detection, which is a global and local joint detection strategy. It combines a deep learning target detection algorithm with template matching to make full use of image information. It also integrates multi-process and multi-threading mechanisms to speed up processing. Experiments show that the system has high detection accuracy for targets with focal lengths varying from one to ten times. At the same time, the real-time and stable display of detection results is realized by aiming at the moving UAV video image.


2021 ◽  
Vol 13 (23) ◽  
pp. 12980
Author(s):  
Zhenhua Wang ◽  
Xinyue Zhang ◽  
Jing Li ◽  
Kuifeng Luan

Target detection in offshore unmanned aerial vehicle data is still a challenge due to the complex characteristics of targets, such as multi-sizes, alterable orientation, and complex backgrounds. Herein, a YOLO-based detection model (YOLO-D) was proposed for target detection in offshore unmanned aerial vehicle data. Based on the YOLOv3 network, the residual module was improved by establishing dense connections and adding a dual-attention mechanism (CBAM) to enhance the use of features and global information. Then, the loss function of the YOLO-D model was added to the weight coefficients to increase detection accuracy for small-size targets. Finally, the feature pyramid network (FPN) was replaced by the secondary recursive feature pyramid network to reduce the impacts of a complicated environment. Taking the car, boat, and deposit near the coastline as the targets, the proposed YOLO-D model was compared against other models, including the faster R-CNN, SSD, YOLOv3, and YOLOv5, to evaluate its detection performance. The results showed that the evaluation metrics of the YOLO-D model, including precision (Pr), recall (Re), average precision (AP), and the mean of average precision (mAP), had the highest values. The mAP of the YOLO-D model increased by 37.95%, 39.44%, 28.46%, and 5.08% compared to the faster R-CNN, SSD, YOLOv3, and YOLOv5, respectively. The AP of the car, boat, and deposit reached 96.24%, 93.70%, and 96.79% respectively. Moreover, the YOLO-D model had a higher detection accuracy than other models, especially in the detection of small-size targets. Collectively, the proposed YOLO-D model is a suitable model for target detection in offshore unmanned aerial vehicle data.


2015 ◽  
Vol 738-739 ◽  
pp. 1105-1110 ◽  
Author(s):  
Yuan Qing Qin ◽  
Ying Jie Cheng ◽  
Chun Jie Zhou

This paper mainly surveys the state-of-the-art on real-time communicaton in industrial wireless local networks(WLANs), and also identifys the suitable approaches to deal with the real-time requirements in future. Firstly, this paper summarizes the features of industrial WLANs and the challenges it encounters. Then according to the real-time problems of industrial WLAN, the fundamental mechanism of each recent representative resolution is analyzed in detail. Meanwhile, the characteristics and performance of these resolutions are adequately compared. Finally, this paper concludes the current of the research and discusses the future development of industrial WLANs.


2021 ◽  
Vol 15 (4) ◽  
pp. 18-30
Author(s):  
Om Prakash Samantray ◽  
Satya Narayan Tripathy

There are several malware detection techniques available that are based on a signature-based approach. This approach can detect known malware very effectively but sometimes may fail to detect unknown or zero-day attacks. In this article, the authors have proposed a malware detection model that uses operation codes of malicious and benign executables as the feature. The proposed model uses opcode extract and count (OPEC) algorithm to prepare the opcode feature vector for the experiment. Most relevant features are selected using extra tree classifier feature selection technique and then passed through several supervised learning algorithms like support vector machine, naive bayes, decision tree, random forest, logistic regression, and k-nearest neighbour to build classification models for malware detection. The proposed model has achieved a detection accuracy of 98.7%, which makes this model better than many of the similar works discussed in the literature.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Zaki Mustapa

This paper discusses on attitude control of a quadcopter unmanned aerial vehicle (UAV) in real time application. Newton-Euler equation is used to derive the model of system and the model characteristic is analyzed. The paper describes the controller design method for the hovering control of UAV automatic vertical take-off system. In order to take-off the quadcopter and stable the altitude, PID controller has been designed. The scope of study is to develop an altitude controller of the vertical take-off as realistic as possible. The quadcopter flight system has nonlinear characteristics. A simulation is conducted to test and analyze the control performance of the quadcopter model. The simulation was conducted by using Mat-lab Simulink. On the other hand, for the real time application, the PCI-1711 data acquisition card is used as an interface for controller design which routes from Simulink to hardware. This study showed the controller designs are implemented and tuned to the real system using Real Time Windows Target approach by Mat-Lab Simulink.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhaoli Wu ◽  
Xin Wang ◽  
Chao Chen

Due to the limitation of energy consumption and power consumption, the embedded platform cannot meet the real-time requirements of the far-infrared image pedestrian detection algorithm. To solve this problem, this paper proposes a new real-time infrared pedestrian detection algorithm (RepVGG-YOLOv4, Rep-YOLO), which uses RepVGG to reconstruct the YOLOv4 backbone network, reduces the amount of model parameters and calculations, and improves the speed of target detection; using space spatial pyramid pooling (SPP) obtains different receptive field information to improve the accuracy of model detection; using the channel pruning compression method reduces redundant parameters, model size, and computational complexity. The experimental results show that compared with the YOLOv4 target detection algorithm, the Rep-YOLO algorithm reduces the model volume by 90%, the floating-point calculation is reduced by 93.4%, the reasoning speed is increased by 4 times, and the model detection accuracy after compression reaches 93.25%.


2020 ◽  
Vol 5 (1) ◽  
pp. 71-84
Author(s):  
Adhyta Harfan ◽  
Dipo Yudhatama ◽  
Imam Bachrodin

Metode Fotogrametri telah banyak digunakan dalam survei dan pemetaan. Seiring dengan kemajuan ilmu pengetahuan dan teknologi, metode fotogrametri saat ini berbasiskan pesawat tanpa awak atau yang lebih dikenal dengan UAV (Unmanned Aerial Vehicle). Kelebihan metode fotogrametri berbasiskan UAV untuk pengukuran garis pantai adalah memiliki resolusi spasial yang sangat tinggi dan dapat menjagkau daerah-daerah yang sulit dan berbahaya. Di samping itu juga dapat memberikan data foto udara terkini dengan sekala detail. Dalam penelitian ini membandingkan ketelitian horisontal antara hasil pengukuran garis pantai menggunakan metode fotogrametri berbasiskan UAV secara rektifikasi dengan GCP (Ground Control Point) maupun secara PPK (Post Processed Kinematic) dengan pengukuran garis pantai metode GNSS RTK (Real Time Kinematic). Hasil perhitungan ketelitian horisontal mengacu pada standar publikasi IHO S-44 tentang pengukuran garis pantai. Pemotretan dilakukan dengan ketinggian terbang 180 m, dengan tampalan depan dan samping 80%. Hasil perhitungan ketelitian horisontal foto udara terektifikasi 5 GCP, foto udara PPK dan foto udara PPK terektifikasi 1 GCP terhadap pengukuran garis pantai dengan metode GNSS RTK diperoleh nilai standar deviasi (σ) dan 95% selang kepercayaan (CI95%) masing-masing sebagai berikut: σ5gcp=10,989 cm dengan CI95% 16.8 cm < μ < 21.2 cm , σppk=26,066 cm dengan CI95% 26.5 cm < μ < 37 cm dan σppk1gcp=10,378 cm dengan CI95% 15.6 cm < μ < 19.8 cm. Kemudian terdapat 10 objek tematik berdasarkan Peta Laut Nomor 1 yang dapat diinterpretasi pada hasil orthomosaic foto udara.


Sign in / Sign up

Export Citation Format

Share Document