scholarly journals Study on the Fractal Characteristics of the Pomegranate Biotite Schist under Impact Loading

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jianguo Wang ◽  
Ting Zuo ◽  
Xianglong Li ◽  
Zihao Tao ◽  
Jun Ma

In order to study the fractal characteristics of the pomegranate biotite schist under the effect of blasting loads, a one-dimensional SHPB impact test was carried out to test the dynamic compressive strength, damage morphology, fracture energy dissipation density, and other parameters of the rocks under different strain rates; besides, sieve tests were conducted to count the mass fractal characteristics of the crushed masses under different strain rates to calculate the fractal dimension of the crushed rock D . Finally, the relationships between fractal dimension and dynamic compressive strength, crushing characteristics, and energy dissipation characteristics were analysed. The results show that under different impact loads, the strain rate effect of the rock is significant and the dynamic compressive strength increases with the increasing strain rate, and they show a multiplicative power relationship. The higher the strain rate of the rock, the deeper the fragmentation and the higher the fractal dimension, and the fractal dimension and rock crushing energy density are multiplied by a power relationship. By performing the comparative analysis of the pomegranate biotite schist, a reasonable strain rate range of 78.75 s-1~82.51 s-1 and a reasonable crushing energy consumption density range of 0.78 J·cm-3~0.92 J·cm-3 were determined. This research provides a great reference for the analysis of dynamic crushing mechanism, crushing block size distribution, and crushing energy consumption of the roadway surrounding rock.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5554
Author(s):  
Yixin Mo ◽  
Songlin Yue ◽  
Qizhen Zhou ◽  
Bowei Feng ◽  
Xiao Liu

Comparing with the traditional construction process, 3D printing technology used in construction offers many advantages due to the elimination of formwork. Currently, 3D printing technology used in the construction field is widely studied, however, limited studies are available on the dynamic properties of 3D printed materials. In this study, the effects of sand to binder ratios and printing directions on the fractal characteristics, dynamic compressive strength, and energy dissipation density of 3D printed cement mortar (3DPCM) are explored. The experiment results indicate that the printing direction has a more significant influence on the fractal dimension compared with the sand to binder ratio (S/B). The increasing S/B first causes an increase and then results in a decline in the dynamic compressive strength and energy dissipation of different printing directions. The anisotropic coefficient of 3DPCM first is decreased by 20.67%, then is increased by 10.56% as the S/B increases from 0.8 to 1.4, showing that the anisotropy is first mitigated, then increased. For the same case of S/B, the dynamic compressive strength and energy dissipation are strongly dependent on the printing direction, which are the largest printing in the Y-direction and the smallest printing in the X-direction. Moreover, the fractal dimension has certain relationships with the dynamic compressive strength and energy dissipation density. When the fractal dimension changes from 2.0 to 2.4, it shows a quadratic relationship with the dynamic compressive strength and a logarithmic relationship with the energy dissipation density in different printing directions. Finally, the printing mortar with an S/B = 1.1 is proved to have the best dynamic properties, and is selected for the 3D printing of the designed field barrack model.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Zhiyu Zhang ◽  
Qingyun Qian ◽  
Hao Wang ◽  
Yonghui Huang ◽  
Jianguo Wang ◽  
...  

Abstract To study the dynamic damage and fracture of metamorphic limestone under explosive load and the stability of the surrounding rock, the stress-strain curve, fracture morphology, and energy dissipation characteristics of metamorphic limestone in the Dahongshan mining area under different strain rates were studied by the Hopkinson pressure bar (SHPB), stress wave analysis, and fractal theory. The experimental results show that the crushing form and degree are significantly affected by the loading strain rate. There are several typical failure modes. When the strain rate is 17.56 s−1, there is no obvious failure except corner cracks. When the strain rate is between 26.92 s−1 and 56.18 s−1, the failure mode of the specimen is axial splitting failure, and when the strain rate is 67.34 s−1, splitting and shearing failure occur. With the increase of the strain rate, the growth rate of the dynamic compressive strength slows down. Compared with static compressive strength, the strength factor increases from 1.15 to 4.19. Also, the fractal dimension shows a gentle increase. When Df is in the range of 1.82~2.24, there is a sudden change in fragmentation when the strain rate is in the range of 34.70 s−1~56.18 s−1. Energy dissipation density increases logarithmically with the strain rate. The results reveal the dynamic breaking and energy consumption laws of metamorphic limestone under impact loads with different strain rates and could provide some reference value for the safe and efficient construction in the Dahongshan mining area and similar engineering projects.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bin Du ◽  
Haibo Bai ◽  
Minglei Zhai ◽  
Shixin He

To study the influence of wetting-drying cycles on dynamic mechanical properties of rock masses, the impact compression tests of red sandstone samples were carried out by using a split Hopkinson pressure bar (SHPB) apparatus with a diameter of 50 mm. The results showed that under the same number of wetting-drying cycles, the dynamic compressive strength of red sandstone increased exponentially with the strain rate, and the sensitivity of the strain rate decreased with the increase of wetting-drying cycles. The deterioration effect of wetting-drying cycles was significant, and the dynamic and static compressive strength decreased with the increase of wetting-drying cycles; the higher the strain rate, the stronger the sensitivity to wetting-drying cycles. Besides, the influence of wetting-drying cycles and strain rate was comprehensively studied, and the equation of dynamic compressive strength of red sandstone was obtained. After different wetting-drying cycles, the fractal characteristics of red sandstone dynamic fragmentation were obvious, and the fractal dimension was 2.02–2.80, and the fractal dimension increased logarithmically with the strain rate. Finally, the internal microstructure of red sandstone after different wetting-drying cycles was analyzed, and the degradation mechanism of the rock by the cycles was discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Guoliang Yang ◽  
Jingjiu Bi ◽  
Linian Ma

Studying the relationship between energy consumption and crushed size of shale under different loading conditions is the key to efficient shale cracking. The split Hopkinson pressure bar system was used to study the dynamic mechanical properties of shale under parallel- and vertical-bedding loading, and energy dissipation in the impact tests was calculated. Relationships between the average crushed size of shale fracture products and energy dissipation and between the fractal dimension and dissipated energy were studied using fractal theory. The experimental results showed that the dynamic compressive strength of shale under parallel- and vertical-bedding conditions had an obvious positive correlation with the strain rate. Dissipative energy of the shale samples under loading in both directions increased with the increase of strain rate. The increase of the strain rate enhanced crushing of the sample. The vertical-bedding shale samples had stronger ability to absorb energy and more internal crack propagation. Dissipative energies of the shale samples in the parallel- and vertical-bedding impact tests were positively related to the fractal dimension. The fractal dimension increased with the increase of dissipative energy during sample failure; with further increase in the dissipative energy, its effect on the change of fractal dimension gradually weakened.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2585 ◽  
Author(s):  
Yan Li ◽  
Yue Zhai ◽  
Xuyang Liu ◽  
Wenbiao Liang

In order to study the fractal characteristics and energy dissipation of concrete suffered freeze-thaw cycle actions and impact loading, C35 concrete was taken as the research object in this paper, and freeze-thaw cycle tests were carried out with a freeze-thaw range of −20 °C~20 °C and a freeze-thaw frequency of 0~50 times. The degradation characteristics of concrete material and the variation rules of basic physical parameters under various freeze-thaw cycle conditions were obtained consequently. By using the SHPB (separated Hopkinson pressure bar) test device, impact compression tests of concrete specimens under different freeze-thaw cycle actions were developed, then the process of impact crushing and the mechanism of damage evolution were analyzed. Based on the screening statistical method and the fractal theory, the scale-mass distribution rules and fractal dimension characteristics of crushing blocks are investigated. Furthermore, the absorption energy, fracture energy and block kinetic energy of concrete under different conditions were calculated according to the energy dissipation principle of SHPB test. The relationship between the energy consumption density and the fractal dimension of fragments was established, and the coupling effect mechanism of freeze-thaw cycle action and strain rate effect on the fractal characteristics and energy consumption was revealed additionally. The research results show that the concrete under different freeze-thaw cycle conditions and impact loading speeds has fractal properties from the microscopic damage to the macroscopic fracture. The energy dissipation is intrinsically related to the fractal characteristics, and the energy consumption density increases with the increase of the fractal dimension under a certain freeze-thaw cycle condition. When at a certain loading speed, with the growth of freeze-thaw cycles, the energy consumption density reduces under the same fractal dimension, while the fractal dimension improves under the same energy consumption density.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Shan Yang ◽  
Zhiyong Zhou ◽  
Yifei Zhao ◽  
Wei Yang

In order to study the effect of cement-sand ratio on the dynamic mechanical properties of the full tailings cemented backfilling, three sets of full tailings cemented backfilling specimens with different cement-sand ratios were prefabricated. The uniaxial impact of the prefabricated specimens was performed by the Ф50 mm SHPB test system. Test results showed that full tailings cemented backfilling had strong reflection and damping effects on elastic wave propagation. At lower strain rates, specimens presented strength hardening, and at higher strain rates, the test specimens presented rapid-softening strength; the strength-hardened specimen reached the peak stress at 40 μs, and the softening specimen reached the peak stress at about 18 μs; with the increase of strain rate, dynamic compressive strength, growth factor of dynamic strength, peak strain, and dynamic-static strain ratio of specimens increased totally. When the cement-sand ratio increased, ultimate dynamic compressive strength, limit dynamic strength growth factor, and ultimate peak strain of the specimen were higher; at the same strain rate, with the increase of cement content, the dynamic compressive strength, dynamic strength growth factor, and dynamic-static strain ratio of the test piece all decreased. The failure mode of the specimen was crushing failure. Under the same strain rate, when the cement content decreased, there was a higher damage degree of specimens.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1902
Author(s):  
Wenbiao Liang ◽  
Junhai Zhao ◽  
Yan Li ◽  
Yue Zhai

The fractal characteristics and energy dissipation of basalt fiber reinforced concrete (BFRC) with five kinds of fiber volume contents (0.0%, 0.1%, 0.2%, 0.3%, 0.4%) after exposure to different temperatures (20 °C, 200 °C, 400 °C, 600 °C, 800 °C) under impact loading were investigated by using a 50 mm diameter split Hopkinson pressure bar (SHPB) apparatus. Scale-mass distribution rules and fractal dimension characteristics of fragments were studied based on the screening statistical method and the fractal theory. Furthermore, the relationship between the energy consumption density and the fractal dimension of fragments was established, and the effects of fiber content, temperature and impact velocity on fractal dimension and absorption energy were analyzed. The results show that the crushing severity of fragments and fractal dimension increase with the impact velocity under the same fiber content. The energy consumption density increases first and then decreases with increasing fiber content, and also decreases with increasing temperature. When the temperature and fiber content remain unchanged, the energy consumption density increases linearly with the increasing fractal dimension, and under the same impact velocity and temperature, there is no obvious linear relationship between energy consumption density and fractal dimension.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


Author(s):  
Shi Liu ◽  
Jinyu Xu

AbstractIn order to study the dynamic compression mechanical properties of engineering rock under high strain rate (100~102 S−1)loads, dynamic compression tests of three common engineering rocks (marble, sandstone and granite) taken from the Qinling Mountain are studied subjected to five different kinds of shock air pressure using Φ 100 mm split Hopkinson pressure bar test system improved with purple copper waveform shaper. The dynamic compression stress-strain curves, dynamic compressive strength, peak strain, energy absorption rate and elastic modulus of three rocks variation with strain rate are researched. The dynamic compression failure modes under different strain rates are analyzed. Then the three-dimensional numerical simulations of waveform shaper shaping effects and stress wave propagation in the SHPB tests are carried out to reproduce the test results. The research results show that the dynamic compression stress-strain curves show certain discreteness, and there is an obvious rebound phenomenon after the peak. With the increase in strain rate, the dynamic compressive strength, peak strain and energy absorption rate are all in a certain degree of increase, but the elastic modulus have no obvious change trend. Under the same strain rate, the dynamic compressive strength of granite is greatest while of sandstone is least. With the increase in strain rate, the margin of increase in peak strain and energy absorption rate of granite is greatest while of sandstone is least. The failure modes of the sample experience a developing process from outside to inside with the increase of strain rate.


1980 ◽  
Vol 17 (1) ◽  
pp. 74-88 ◽  
Author(s):  
V. R. Parameswaran

Uniaxial unconfined compression tests were carried out on frozen saturated Ottawa sand containing about 20% by weight of water, at temperatures between −2 and − 15°C, and at strain rates varying between 10−7 and 10−2 s−1. The compressive strength and the initial tangent modulus increased with increasing strain rate and with decreasing temperature. At −2°C, values of strength and modulus were considerably lower than those predicted by linear extrapolation of the values observed at lower temperatures, on a log–log scale. This could be due to the presence of unfrozen water in the samples at −2°C.


Sign in / Sign up

Export Citation Format

Share Document