scholarly journals Experimental Study on Surface Roughness and Flank Wear in Turning of Nimonic C263 under Dry Cutting Conditions

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
J. Francis Xavier ◽  
B. Ravi ◽  
D. Jayabalakrishnan ◽  
Chakaravarthy Ezilarasan ◽  
V. Jayaseelan ◽  
...  

Aircraft component manufacturing sector is looking for high precision machining in aircraft components. The present work explores the operability of green manufacturing of Nimonic C263 using dry turning. Nimonic C263 is tough to turn owing to its inherent quality like low conductivity and more work hardening. Therefore, in order to improve this machined surface/integrity, the controlling factors were optimized based on desirability approach for minimum of surface roughness and flank wear during turning of this alloy using CBN insert. L27 orthogonal array was chosen to carry out the experiment. The effects of controlling factors, such as cutting speed ( V ), feed rate ( S ), and cut penetration/depth of cut ( a p ) on the outputs, were also explored. The feed rate was a major impact to affect surface finish and flank wear. The average error percentage between the experimental and RSM models for surface finish was 4.76 percent and 2.79 percent for flank wear.

Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mahir Akgün ◽  
Fuat Kara

The present work has been focused on cutting force (Fc) and analysis of machined surface in turning of AA 6061 alloy with uncoated and PVD-TiB2 coated cutting inserts. Turning tests have been conducted on a CNC turning under dry cutting conditions based on Taguchi L18 (21 × 33) array. Kistler 9257A type dynamometer and equipment have been used in measuring the main cutting force (Fc) in turning experiments. Analysis of variance (ANOVA) has been applied to define the effect levels of the turning parameters on Fc and Ra. Moreover, the mathematical models for Fc and Ra have been developed via linear and quadratic regression models. The results indicated that the best performance in terms of Fc and Ra was obtained at an uncoated insert, cutting speed of 350 m/min, feed rate of 0.1 mm/rev, and depth of cut of 1 mm. Moreover, the feed rate is the most influential parameter on Ra and Fc, with 64.28% and 54.9%, respectively. The developed mathematical models for cutting force (Fc) and surface roughness (Ra) present reliable results with coefficients of determination (R2) of 96.04% and 92.15%, respectively.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Yunn-Shiuan Liao ◽  
Tsung-Hsien Li ◽  
Yi-Chen Liu

Abstract Application of liquid carbon dioxide to improve cutting performance in micro-end milling of Ti-6Al-4V titanium alloy was proposed in this study. It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting, when a 0.5 mm diameter end milling cutter was used in dry cutting. But, the tiny and shattered chips produced by the use of 0.3 mm diameter cutter could adhere on the machined surface and deteriorate surface finish, if the cutting speed was higher than 40 m/min. Cutting temperature was effectively decreased by applying liquid carbon dioxide during micromilling, which in turn reduced the amount of chips adhering on the machined surface and lowered flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μm under dry cutting to 0.04 μm under the liquid carbon dioxide assisted cutting condition. And there were no flank wear and very few burrs left on the machined surface for the condition used in the experiment. The height of the burrs was only 25% of that under dry cutting. More, minimum quantity lubrication (MQL) was proposed to be applied together with the liquid carbon dioxide to enhance lubrication effect. It was noted that the machined surface roughness was further decreased by 15% as compared with that when the liquid carbon dioxide was applied alone. The height of burrs was reduced from 32 μm to 16 μm.


Author(s):  
Chetan Darshan ◽  
Lakhvir Singh ◽  
APS Sethi

Manufacturers around the globe persistently looking for the cheapest and quality manufactured machined components to compete in the market. Good surface quality is desired for the proper functioning of the produced parts. The surface quality is influenced by cutting speed, feed rate and depth of cut and many other parameters. In the present study attempt has been made to evaluate the performance of ceramic inserts during hard turning of EN-31 steel. The analysis of variance is applied to study the effect of cutting speed, feed rate and depth of cut on Flank wear and surface roughness. Model is found to be statically significant using regression model, while feed and depth of cut are the factor affecting Flank wear and feed is dominating factors for surface roughness. The analysis of variance was used to analyze the input parameters and there interactions during machining. The developed model predicted response factor at 95% confidence level.


2014 ◽  
Vol 14 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Suha K. Shihab ◽  
Zahid A. Khan ◽  
Aas Mohammad ◽  
Arshad Noor Siddiquee

AbstractThe cutting parameters such as the cutting speed, the feed rate, the depth of cut, etc. are expected to affect the two constituents of surface integrity (SI), i.e., surface roughness and micro-hardness. An attempt has been made in this paper to investigate the effect of the CNC hard turning parameters on the surface roughness average (Ra) and the micro-hardness (μh) of AISI 52100 hard steel under dry cutting conditions. Nine experimental runs based on an orthogonal array of the Taguchi method were performed and grey relational analysis method was subsequently applied to determine an optimal cutting parameter setting. The feed rate was found to be the most influential factor for both the Ra and the μh. Further, the results of the analysis of variance (ANOVA) revealed that the cutting speed is the most significant controlled factor for affecting the SI in the turning operation according to the weighted sum grade of the surface roughness average and micro-hardness.


2015 ◽  
Vol 13 ◽  
pp. 19-22 ◽  
Author(s):  
Gabriel Benga ◽  
Danut Savu ◽  
Adrian Olei

The paper presents the influence of various cutting regimes on the surface roughness, when a hardened bearing steel has been machined using both ceramic and PCBN cutting tools. There were used different cutting conditions varying cutting speed, feed rate and depth of cut in order to determine the influence of each cutting parameter on the surface finish.


2010 ◽  
Vol 150-151 ◽  
pp. 1667-1672 ◽  
Author(s):  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
Mohd Shahir Kasim ◽  
T.K. Soon ◽  
Gusri Akhyar Ibrahim ◽  
...  

The purpose of this study is to investigate the effect of turning parameters on the surface integrity of Inconel 718. The turning parameters studied were cutting speed of 90, 120, 150 m/min, feed rate of 0.15, 0.25, 0.25mm/rev and depth of cut of 0.3, 0.4, 0.5 mm under minimum quantity lubricant (MQL) using coated carbide tool. surface response methodology (RSM) design of experiment using Box-Behnken approach has been employed consisting of various combination of turning parameters Surface roughness, surface topography, microstructure and the micro hardness of the machined surface were studied after the machining process. Feed rate was found to be the most significant parameter affecting the surface roughness. The optimum parameter was obtained with Ra equal to 0.243 µm at cutting speed of 150 m/min, feed rate of 0.25 mm/rev and depth of cut of 0.3mm. A mathematical model for surface roughness was developed using Response Surface Methodology. The effect of turning parameters and factor interactions on surface roughness is presented in 3D graphical form, which helps in selecting the optimum process parameters to achieve the desired surface quality.


2013 ◽  
Vol 685 ◽  
pp. 57-62
Author(s):  
Seyyed Pedram Shahebrahimi ◽  
Abdolrahman Dadvand

One of the most important issues in turning operations is to choose suitable parameters in order to achieve a desired surface finish. The surface finish in machining operation depends on many parameters such as workpiece material, tool material, tool coating, machining parameters, etc. The purpose of this research is to focus on the analysis of optimum cutting parameters to get the lowest surface roughness in turning Titanium alloy Ti-6Al-4V with the insert with the standard code DNMG 110404 under dry cutting condition, by the Taguchi method. The turning parameters are evaluated as cutting speed of 14, 20 and 28 m/min, feed rate of 0.12, 0.14 and 0.16 mm/rev, depth of cut of 0.3, 0.6 and 1 mm, each at three levels. The Experiment was designed using the Taguchi method and 9 experiments were conducted by this process. The results are analyzed using analysis of variance method (ANOVA). The results of analysis show that the depth of cut has a significant role to play in producing lower surface roughness that is about 63.33% followed by feed rate about 30.25%, and cutting speed has less contribution on the surface roughness. Also it was realized that with the use of the confirmation test, the surface roughness improved by 227% from its initial state.


Sign in / Sign up

Export Citation Format

Share Document