scholarly journals Molecular Analysis of Prognosis and Immune Pathways of Pancreatic Cancer Based on TNF Family Members

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zemin Zhu ◽  
Caixi Tang ◽  
Tao Xu ◽  
Zhijian Zhao

Background. Tumor necrosis factor (TNF) family members play a vital role in anticancer therapy. This study aimed to screen the critical markers for the prognostic analysis of pancreatic adenocarcinoma (PAAD) by analyzing the clustering patterns of TNF family members in PAAD. Methods. In this study, the NMF clustering method was adopted to cluster samples from The Cancer Genome Atlas (TCGA) to acquire the clustering pattern of the TNF family in PAAD. Differential gene analysis was performed according to TNF family gene clusters. The support vector machine (SVM) method was conducted for further gene screening, and the risk score model of the screened genes was constructed by Lasso. The single sample gene set enrichment analysis (ssGSEA) method was adopted for immunoenrichment analysis and tumor immune cycle analysis. Genes associated with risk scores were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Results. We clustered PAAD into two groups based on TNF family genes. Nineteen TNF family genes were significantly associated with the clinical characteristics of PAAD patients. The risk score formula was composed of RHOD, UBE2C, KLHDC7b, MSLN, ADAM8, NME3, GNG2, and MCOLN3. GSE57495 and GSE62452 datasets verified that patients in the high-risk group had a worse prognosis than those in the low-risk group. The risk score-related genes analyzed by GO and KEGG were mainly involved in the modulation of chemical synaptic transmission and synaptic vesicle cycle pathway. There were significant differences in the expression of 15 immune cells between the high-risk group and the low-risk group. The risk score was positively correlated with HCK, interferon, MHC-I, and STAT1. The expression of genes relevant to chemokine, immunostimulator, MHC, and receptor was strongly associated with the risk score. Conclusion. The risk score model based on the TNF family can predict the prognosis and immune status of PAAD patients. Further research is needed to verify the clinical prognostic value of risk scores.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoxia Tong ◽  
Xiaofei Qu ◽  
Mengyun Wang

BackgroundCutaneous melanoma (CM) is one of the most aggressive cancers with highly metastatic ability. To make things worse, there are limited effective therapies to treat advanced CM. Our study aimed to investigate new biomarkers for CM prognosis and establish a novel risk score system in CM.MethodsGene expression data of CM from Gene Expression Omnibus (GEO) datasets were downloaded and analyzed to identify differentially expressed genes (DEGs). The overlapped DEGs were then verified for prognosis analysis by univariate and multivariate COX regression in The Cancer Genome Atlas (TCGA) datasets. Based on the gene signature of multiple survival associated DEGs, a risk score model was established, and its prognostic and predictive role was estimated through Kaplan-Meier (K-M) analysis and log-rank test. Furthermore, the correlations between prognosis related genes expression and immune infiltrates were analyzed via Tumor Immune Estimation Resource (TIMER) site.ResultsA total of 103 DEGs were obtained based on GEO cohorts, and four genes were verified in TCGA datasets. Subsequently, four genes (ADAMDEC1, GNLY, HSPA13, and TRIM29) model was developed by univariate and multivariate Cox regression analyses. The K-M plots showed that the high-risk group was associated with shortened survival than that in the low-risk group (P < 0.0001). Multivariate analysis suggested that the model was an independent prognostic factor (high-risk vs. low-risk, HR= 2.06, P < 0.001). Meanwhile, the high-risk group was prone to have larger breslow depth (P< 0.001) and ulceration (P< 0.001).ConclusionsThe four-gene risk score model functions well in predicting the prognosis and treatment response in CM and will be useful for guiding therapeutic strategies for CM patients. Additional clinical trials are needed to verify our findings.



2021 ◽  
Author(s):  
Yong Lv ◽  
ShuGuang Jin ◽  
Bo Xiang

Abstract BackgroundTreatment of neuroblastoma is evolving toward precision medicine. LncRNAs can be used as prognostic biomarkers in many types of cancer.MethodsBased on the RNA-seq data from GSE49710, we built a lncRNAs-based risk score using the least absolute shrinkage and selection operation (LASSO) regression. Cox regression, receiver operating characteristic curves were used to evaluate the association of the LASSO risk score with overall survival. Nomograms were created and then validated in an external cohort from TARGET database. Gene set enrichment analysis was performed to identify the significantly changed biological pathways. ResultsThe 16-lncRNAs-based LASSO risk score was used to separate patients into high-risk and low-risk groups. In GSE49710 cohort, the high-risk group exhibited a poorer OS than those in the low-risk group (P<0.001). Moreover, multivariate Cox regression analysis demonstrated that LASSO risk score was an independent risk factor (HR=6.201;95%CI:2.536-15.16). The similar prognostic powers of the 16-lncRNAs were also achieved in the external cohort and in stratified analysis. In addition, a nomogram was established and worked well both in the internal validation cohort (C-index=0.831) and external validation cohort (C-index=0.773). The calibration plot indicated the good clinical utility of the nomogram. Gene set enrichment analysis (GSEA) indicated that high-risk group was related with cancer recurrence, metastasis and inflammatory associated pathways.ConclusionThe lncRNA-based LASSO risk score is a promising and potential prognostic tool in predicting the survival of patients with neuroblastoma. The nomogram combined the lncRNAs and clinical parameters allows for accurate risk assessment in guiding clinical management.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junjie Guo ◽  
Xiaoyang Li ◽  
Shen Shen ◽  
Xuejian Wu

AbstractCancer immunotherapy is a promising therapeutic approach, but the prognostic value of immune-related genes in osteosarcoma (OS) is unknown. Here, Target-OS RNA-seq data were analyzed to detect differentially expressed genes (DEGs) between OS subgroups, followed by functional enrichment analysis. Cox proportional risk regression was performed for each immune-related gene, and a risk score model to predict the prognosis of patients with OS was constructed. The risk scores were calculated using the risk signature to divide the training set into high-risk and low-risk groups, and validation was performed with GSE21257. We identified two immune-associated clusters, C1 and C2. C1 was closely related to immunity, and the immune score was significantly higher in C1 than in C2. Furthermore, we validated 6 immune cell hub genes related to the prognosis of OS: CD8A, KIR2DL1, CD79A, APBB1IP, GAL, and PLD3. Survival analysis revealed that the prognosis of the high-risk group was significantly worse than that of the low-risk group. We also explored whether the 6-gene prognostic risk model was effective for survival prediction. In conclusion, the constructed a risk score model based on immune-related genes and the survival of patients with OS could be a potential tool for targeted therapy.



2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Lei Zhang ◽  
Dahai Hu ◽  
Shuchen Huangfu ◽  
Jiaxin Zhou ◽  
Wei Wang ◽  
...  

The genomic variant features (mutations, deletions, structural variants, etc.) within gastric cancer impact its evolution and immunogenicity. The tumor has developed several coping strategies to respond to these changes by DNA repair and replication (DRR). However, the intrinsic relationship between the associated DRR-related genes and gastric cancer progression remained unknown. This study selected DRR-related genes with tumor mutation burden based on the TCGA (The Cancer Genome Atlas) database of gastric cancer transcriptome and mutation data. The prognosis model of seven genes (LAMA2, CREB3L3, SELP, ABCC9, CYP1B1, CDH2, and GAMT) was constructed by a univariate and LASSO regression analysis and divided into high-risk and low-risk groups with the median risk score. Survival analysis showed that overall survival (OS) was lower in the high-risk group than that in the low-risk group. Moreover, patients with gastric cancer in the high-risk group have worse survival in different subgroups, including age, gender, histological grade, and TNM stage. The nomogram that included risk scores for DRR-related genes could accurately foresee OS of patients with gastric cancer. Interestingly, the tumor mutation burden score was higher in the low-risk group than that in the high-risk group, and the risk score for DRR-related genes was negatively correlated with tumor mutation burden in gastric cancer. Next, we further combined the risk score and tumor mutation burden to evaluate the prognosis of gastric cancer patients. The low-risk cohort had a better prognosis than the high-risk cohort in the high tumor mutation burden subgroup. The number of mutation types in the high-risk group was lower than that in the low-risk group. In the immune microenvironment of gastric cancer, more naïve B cells, memory resting CD4+ T cells, Treg cells, monocytes cells, and resting mast cells were infiltrated in the high-risk group. At last, PD-L1 and IAP expressions were negatively correlated with the risk scores; patients with gastric cancer in the low-risk group showed better immunotherapy outcomes than those in the high-risk group. Overall, the DRR-related gene signature based on tumor mutation burden is a novel biomarker for prognostic and immunotherapy response in patients with gastric cancer.



2021 ◽  
Author(s):  
Yanjia Hu ◽  
Jing Zhang ◽  
Jing Chen

Abstract Background Hypoxia-related long non-coding RNAs (lncRNAs) have been proven to play a role in multiple cancers and can serve as prognostic markers. Lower-grade gliomas (LGGs) are characterized by large heterogeneity. Methods This study aimed to construct a hypoxia-related lncRNA signature for predicting the prognosis of LGG patients. Transcriptome and clinical data of LGG patients were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LGG cohort in TCGA was chosen as training set and LGG cohorts in CGGA served as validation sets. A prognostic signature consisting of fourteen hypoxia-related lncRNAs was constructed using univariate and LASSO Cox regression. A risk score formula involving the fourteen lncRNAs was developed to calculate the risk score and patients were classified into high- and low-risk groups based on cutoff. Kaplan-Meier survival analysis was used to compare the survival between two groups. Cox regression analysis was used to determine whether risk score was an independent prognostic factor. A nomogram was then constructed based on independent prognostic factors and assessed by C-index and calibration plot. Gene set enrichment analysis and immune cell infiltration analysis were performed to uncover further mechanisms of this lncRNA signature. Results LGG patients with high risk had poorer prognosis than those with low risk in both training and validation sets. Recipient operating characteristic curves showed good performance of the prognostic signature. Univariate and multivariate Cox regression confirmed that the established lncRNA signature was an independent prognostic factor. C-index and calibration plots showed good predictive performance of nomogram. Gene set enrichment analysis showed that genes in the high-risk group were enriched in apoptosis, cell adhesion, pathways in cancer, hypoxia etc. Immune cells were higher in high-risk group. Conclusion The present study showed the value of the 14-lncRNA signature in predicting survival of LGGs and these 14 lncRNAs could be further investigated to reveal more mechanisms involved in gliomas.



2020 ◽  
Author(s):  
Jianfeng Zheng ◽  
Jinyi Tong ◽  
Benben Cao ◽  
Xia Zhang ◽  
Zheng Niu

Abstract Background: Cervical cancer (CC) is a common gynecological malignancy for which prognostic and therapeutic biomarkers are urgently needed. The signature based on immune‐related lncRNAs(IRLs) of CC has never been reported. This study aimed to establish an IRL signature for patients with CC.Methods: The RNA-seq dataset was obtained from the TCGA, GEO, and GTEx database. The immune scores(IS)based on single-sample gene set enrichment analysis (ssGSEA) were calculated to identify the IRLs, which were then analyzed using univariate Cox regression analysis to identify significant prognostic IRLs. A risk score model was established to divide patients into low-risk and high-risk groups based on the median risk score of these IRLs. This was then validated by splitting TCGA dataset(n=304) into a training-set(n=152) and a valid-set(n=152). The fraction of 22 immune cell subpopulations was evaluated in each sample to identify the differences between low-risk and high-risk groups. Additionally, a ceRNA network associated with the IRLs was constructed.Results: A cohort of 326 CC and 21 normal tissue samples with corresponding clinical information was included in this study. Twenty-eight IRLs were collected according to the Pearson’s correlation analysis between immune score and lncRNA expression (P < 0.01). Four IRLs (BZRAP1-AS1, EMX2OS, ZNF667-AS1, and CTC-429P9.1) with the most significant prognostic values (P < 0.05) were identified which demonstrated an ability to stratify patients into low-risk and high-risk groups by developing a risk score model. It was observed that patients in the low‐risk group showed longer overall survival (OS) than those in the high‐risk group in the training-set, valid-set, and total-set. The area under the curve (AUC) of the receiver operating characteristic curve (ROC curve) for the four IRLs signature in predicting the one-, two-, and three-year survival rates were larger than 0.65. In addition, the low-risk and high-risk groups displayed different immune statuses in GSEA. These IRLs were also significantly correlated with immune cell infiltration. Conclusions: Our results showed that the IRL signature had a prognostic value for CC. Meanwhile, the specific mechanisms of the four-IRLs in the development of CC were ascertained preliminarily.



2020 ◽  
Author(s):  
Bin Wu ◽  
Yi Yao ◽  
Yi Dong ◽  
Si Qi Yang ◽  
Deng Jing Zhou ◽  
...  

Abstract Background:We aimed to investigate an immune-related long non-coding RNA (lncRNA) signature that may be exploited as a potential immunotherapy target in colon cancer. Materials and methods: Colon cancer samples from The Cancer Genome Atlas (TCGA) containing available clinical information and complete genomic mRNA expression data were used in our study. We then constructed immune-related lncRNA co-expression networks to identify the most promising immune-related lncRNAs. According to the risk score developed from screened immune-related lncRNAs, the high-risk and low-risk groups were separated on the basis of the median risk score, which served as the cutoff value. An overall survival analysis was then performed to confirm that the risk score developed from screened immune-related lncRNAs could predict colon cancer prognosis. The prediction reliability was further evaluated in the independent prognostic analysis and receiver operating characteristic curve (ROC). A principal component analysis (PCA) and gene set enrichment analysis (GSEA) were performed for functional annotation. Results: Information for a total of 514 patients was included in our study. After multiplex analysis, 12 immune-related lncRNAs were confirmed as a signature to evaluate the risk scores for each patient with cancer. Patients in the low-risk group exhibited a longer overall survival (OS) than those in the high-risk group. Additionally, the risk scores were an independent factor, and the Area Under Curve (AUC) of ROC for accuracy prediction was 0.726. Moreover, the low-risk and high-risk groups displayed different immune statuses based on principal components and gene set enrichment analysis.Conclusions: Our study suggested that the signature consisting of 12 immune-related lncRNAs can provide an accessible approach to measuring the prognosis of colon cancer and may serve as a valuable antitumor immunotherapy.



2020 ◽  
Author(s):  
Lumeng Luo ◽  
Minghe Lv ◽  
Xuan Li ◽  
Tiankui Qiao ◽  
Kuaile Zhao ◽  
...  

Abstract Background: Recent advances in immune checkpoint inhibitors (ICIs) have dramatically changed the therapeutic strategy against lung squamous cell carcinoma (LUSC). In the era of immunotherapy, effective biomarkers to better predict outcomes and inform treatment decisions for patients diagnosed with LUSC are urgently needed. We hypothesized that immune contexture of LUSC is potentially dictated by tumor intrinsic events, such as autophagy. Thus, we attempted to construct an autophagy-related risk signature and examine its prediction value for immune phenotype in LUSC.Method: The expression profile of LUSC was obtained from the cancer genome atlas (TCGA) database and the profile of autophagy-related genes (ARGs) was extracted. The survival‑related ARGs (sARGs) was screened out through survival analyses. Random forest was performed to select the sARGs and construct a prognostic risk signature based on these sARGs. The signature was further validated by receiver operating characteristic (ROC) analysis and Cox regression. GEO dataset was used as an independent testing dataset. Patients were divided into high-risk and low-risk group based on the risk score. Then, gene set enrichment analysis (GSEA) was conducted between the two groups. The Single-Sample GSEA (ssGSEA) was introduced to quantify the relative infiltration of immune cells. The correlations between risk score and several main immune checkpoints were examined. And the ESTIMATE algorithm was used to calculate the estimate/immune/stromal scores of the LUSC. Results: Four ARGs (CFLAR, RGS19, PINK1 and CTSD) with the most significant prognostic values were enrolled to construct the risk signature. Patients in high-risk group had better prognosis than the low-risk group (P < 0.0001 in TCGA; P < 0.01 in GEO) and considered as an independent prognosis factor. We also found that high-risk group indicated an immune-suppression status and had higher levels of infiltrating regulatory T cells and macrophages, which are correlated with worse outcome. Besides, risk score showed a significantly positive correlation with the expression of PD-1 and CTLA4, as well as estimate score and immune score.Conclusion: This study established a novel autophagy-related four-gene prognostic risk signature, and the autophagy-related scores are associated with immune landscape of LUSC, with higher score indicating a stronger immune-suppression status.



Author(s):  
Xinshuang Yu ◽  
Peng Dong ◽  
Yu Yan ◽  
Fengjun Liu ◽  
Hui Wang ◽  
...  

Pancreatic cancer is a highly aggressive disease with poor prognosis. N6-methyladenosine (m6A) is critical for post-transcriptional modification of messenger RNA (mRNA) and long non-coding RNA (lncRNA). However, the m6A-associated lncRNAs (m6A-lncRNA) and their values in predicting clinical outcomes and immune microenvironmental status in pancreatic cancer patients remain largely unexplored. This study aimed to evaluate the importance of m6A-lncRNA and established a m6A-lncRNA signature for predicting immunotherapeutic response and prognosis of pancreatic cancer. The m6A-lncRNA co-expression networks were constructed using data from the TCGA and GTEx database. Based on the least absolute shrinkage and selection operator (LASSO) analysis, we constructed an 8 m6A-lncRNA signature risk model, and selection operator (LASSO) analysis, and stratified patients into the high- and low-risk groups with significant difference in overall survival (OS) (HR = 2.68, 95% CI = 1.74–4.14, P &lt; 0.0001). Patients in the high-risk group showed significantly reduced OS compared to patients in the low-risk group (P &lt; 0.001). The clinical characteristics and m6A-lncRNA risk scores were used to construct a nomogram which accurately predicted the OS in pancreatic cancer. TIMER 2.0 were used to investigate tumor immune infiltrating cells and its relationship with pancreatic cancer. CIBERSORT analysis revealed increased higher infiltration proportions of M0 and M2 macrophages, and lower infiltration of naive B cell, CD8+ T cell and Treg cells in the high-risk group. Compared to the low-risk group, functional annotation using ssGSEA showed that T cell infiltration and the differential immune-related check-point genes are expressed at low level in the high-risk group (P &lt; 0.05). In summary, our study constructed a novel m6A-associated lncRNAs signature to predict immunotherapeutic responses and provided a novel nomogram for the prognosis prediction of pancreatic cancer.



2021 ◽  
Vol 8 ◽  
Author(s):  
Bingqi Dong ◽  
Jiaming Liang ◽  
Ding Li ◽  
Wenping Song ◽  
Jinbo Song ◽  
...  

Background: Bladder cancer (BLCA) is a common malignant tumor of the genitourinary system, and there is a lack of specific, reliable, and non-invasive tumor biomarker tests for diagnosis and prognosis evaluation. Homeobox genes play a vital role in BLCA tumorigenesis and development, but few studies have focused on the prognostic value of homeobox genes in BLCA. In this study, we aim to develop a prognostic signature associated with the homeobox gene family for BLCA.Methods: The RNA sequencing data, clinical data, and probe annotation files of BLCA patients were downloaded from the Gene Expression Omnibus database and the University of California, Santa Cruz (UCSC), Xena Browser. First, differentially expressed homeobox gene screening between tumor and normal samples was performed using the “limma” and robust rank aggregation (RRA) methods. The mutation data were obtained with the “TCGAmutation” package and visualized with the “maftools” package. Kaplan–Meier curves were plotted with the “survminer” package. Then, a signature was constructed by logistic regression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using “clusterProfiler.” Furthermore, the infiltration level of each immune cell type was estimated using the single-sample gene set enrichment analysis (ssGSEA) algorithm. Finally, the performance of the signature was evaluated by receiver-operating characteristic (ROC) curve and calibration curve analyses.Results: Six genes were selected to construct this prognostic model: TSHZ3, ZFHX4, ZEB2, MEIS1, ISL1, and HOXC4. We divided the BLCA cohort into high- and low-risk groups based on the median risk score calculated with the novel signature. The overall survival (OS) rate of the high-risk group was significantly lower than that of the low-risk group. The infiltration levels of almost all immune cells were significantly higher in the high-risk group than in the low-risk group. The average risk score for the group that responded to immunotherapy was significantly lower than that of the group that did not.Conclusion: We constructed a risk prediction signature with six homeobox genes, which showed good accuracy and consistency in predicting the patient’s prognosis and response to immunotherapy. Therefore, this signature can be a potential biomarker and treatment target for BLCA patients.



Sign in / Sign up

Export Citation Format

Share Document