Experimental Study on the Anisotropy of Layered Rock Mass under Triaxial Conditions

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Long Cheng ◽  
Hui Wang ◽  
Xu Chang ◽  
Yewei Chen ◽  
Feilu Xu ◽  
...  

Weak and hard inhomogeneous rock formations are typically encountered during tunnel excavations. The physical and mechanical properties and geological conditions of these rock formations vary significantly; thus, it is crucial to investigate the mechanical characteristics of deep bedded composite rock formations. Three-dimensional (3D) scanning and 3D printing were used to prepare composite rock specimens to simulate natural rock laminae. Triaxial compression tests were conducted to determine the influence of the bedding angle, rock composition, and confining pressure on the mechanical properties of the composite rock specimens. The anisotropic strength characteristics and the damage patterns of the composite rock specimens were analyzed under different confining pressures, and the failure mechanism during triaxial loading was revealed. The results show that the damage of the composite rock specimens with a bedding structure depends on the bedding dip angle and the rock formation. The stress-strain curves and peak strengths of the composite rock specimens have anisotropic characteristics corresponding to their failure modes. As the bedding dip angle increases, the peak strength of the three groups of specimens first decreases and then increases under different confining pressure levels. The compressive strength has a nonlinear relationship with the confining pressure, and the difference between the compressive strengths of specimens with different inclination angles decreases as the confining pressure increases. The Hoek–Brown strength criterion is a good predictor of the nonlinear increase in peak strength of the composite rock specimens under different confining pressures. The specimen with a β  = 60°dip angle shows the most significant increase in the strength difference with increasing confining pressure. The results can be used as a reference for testing and analyzing the anisotropic mechanical properties of bedded rock masses.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chuanwei Zang ◽  
Hongmo Zhu ◽  
Miao Chen ◽  
Shuo Yang ◽  
Liu Yang ◽  
...  

Understanding the deformation failure behavior of the composite rock strata has important implications for deep underground engineering construction. Based on the uniaxial compression laboratory test of the specimens of composite rock strata containing holes, the microscopic parameters in the particle discrete element simulation are firstly calibrated. Then, the mechanical properties and failure characteristics of the composite rock strata with holes under different confining pressures are studied. The results show that different dip angles and confining pressures have significant effects on the peak strength and elastic modulus of the specimens. Under the same confining pressure, the peak strength and elastic modulus decrease first and then increase with the increasing dip angle. As the dip angle is constant, both the peak strength and elastic modulus gradually increase with the increase in confining pressure. It shows that the first area to be damaged in composite rock strata transfers from soft rock to hard rock with the increase in dip angle. With the increase in confining pressure, the range of tensile stress concentration area decreases substantially, while the range of compressive stress concentration area changes less.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1662 ◽  
Author(s):  
Jianguo Wang ◽  
Bowen Hu ◽  
Jia Hwei Soon

The variation of physical and mechanical properties of the lightweight bulk filling material with cement and expanded polystyrene (EPS) beads contents under different confining pressures is important to construction and geotechnical applications. In this study, a lightweight bulk filling material was firstly fabricated with Singapore marine clay, ordinary Portland cement and EPS. Then, the influences of EPS beads content, cement content, curing time and confining pressure on the mass density, stress–strain behavior and compressive strength of this lightweight bulk filling material were investigated by unconsolidated and undrained (UU) triaxial tests. In these tests, the mass ratios of EPS beads to dry clay (E/S) were 0%, 0.5%, 1%, 2%, and 4% and the mass ratios of cement to dry clay (C/S) were 10% and 15%. Thirdly, a series of UU triaxial tests were performed at a confining pressure of 0 kPa, 50 kPa, 100 kPa, and 150 kPa after three curing days, seven curing days, and 28 curing days. The results show that the mass density of this lightweight bulk filling material was mainly controlled by the E/S ratio. Its mass density decreased by 55.6% for the C/S ratio 10% and 54.9% for the C/S ratio 15% when the E/S ratio increased from 0% to 4% after three curing days. Shear failure more easily occurred in the specimens with higher cement content and lower confining pressure. The relationships between compressive strength and mass density or failure strain could be quantified by the power function. Increasing cement content and reducing EPS beads content will increase mass density and compressive strength of this lightweight bulk filling material. The compressive strength with curing time can be expressed by a logarithmic function with fitting correlation coefficient ranging from 0.83 to 0.97 for five confining pressures. These empirical formulae will be useful for the estimation of physical and mechanical properties of lightweight concretes in engineering application.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jifeng Hou ◽  
Zhongping Guo ◽  
Weizhen Liu ◽  
Hengze Yang ◽  
WenWu Xie

Aiming at the backfill with prefabricated fracture under seepage-stress coupling, the concepts of fracture macrodamage, loaded mesodamage, seepage mesodamage, and total damage of backfill were proposed. Based on the macroscopic statistical damage model, the coupling effect of seepage, stress, and initial fracture was considered comprehensively and the damage model of backfill with prefabricated fracture under seepage-stress coupling was established. The mechanical properties of backfill with prefabricated fracture under different seepage water pressures and confining pressures were tested and the rationality of the model was verified. The research shows that the mechanical properties of backfill with prefabricated fracture under the seepage-stress coupling are determined by the seepage water pressure, the load, the initial fracture, and the coupling effect. Fracture and seepage have significant effects on the damage of the backfill. When the seepage water pressure is low, the fracture damage dominates; however, when the seepage water pressure is high, the seepage damage dominates; the total damage under the coupling action is more serious than the single factor. The development laws of the total damage evolution curves under different seepage water pressures and confining pressures are basically the same, and they show the S-shaped distribution law with the increase of the axial strain. With the increase of confining pressure, the damage effect of fracture and seepage on the backfill is weakened, indicating that the confining pressure has a certain inhibitory effect on the damage evolution of the backfill. The research results can provide a theoretical basis for the study of the stability of backfill with geological defects such as joints and fractures in deep high-stress and high-seepage water pressure coal mines.


2021 ◽  
Vol 60 (1) ◽  
pp. 846-852
Author(s):  
Yang Yan-Shuang ◽  
Li Kai-Yue ◽  
Zhou Hui ◽  
Tian Hao-Yuan ◽  
Cheng Wei ◽  
...  

Abstract Computed tomography (CT) scanning technology is helpful in investigating rock materials as it can demonstrate the micro structure of rock clearly. Conventional triaxial compression tests and the corresponding graded triaxial loading tests were carried out to investigate the complex failure mechanism of the marble at the Jinping Hydropower Station. After that CT-scanning tests were done on the loaded marble specimens. The test results show that (1) the CT numbers of the specimens have a certain statistical regularity, that is, the CT numbers of the specimens under different confining pressures satisfy the Weibull distribution, as the confining pressure increases, the mean values rise while variances decrease; (2) in the two groups of tests, the average CT numbers corresponding to the conventional triaxial tests are higher than those corresponding to the graded loading tests, but the CT number variances are lower than those of the graded loading tests; and (3) according to meso-damage mechanics, the damage variables of the rock specimens were established based on the definition of CT numbers. The calculation results show that the damage variables decrease with the increase in confining pressure, the damage variables of the rock specimens in the graded loading tests are higher than those in the conventional triaxial test, and the differences between the two loading tests have grown with the increase in confining pressure.


10.6036/10055 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 309-315
Author(s):  
Lijie Long ◽  
Dongyan Liu ◽  
Dong Wang ◽  
Jin Li

ABSTRACT: The deformation and fracture of rock mass in deep rock mass engineering are affected by the coupling of temperature, seepage, and stress. A test and a calculation model for sandstone under thermal–hydrological–mechanical (THM) coupling were proposed to reveal the mechanical properties of sandstone. The law of coupling for mechanical indicators of sandstone was established by laboratory tests and numerical simulations. The permeability, peak strength, peak strain, residual strength, elastic modulus, plastic deformation area, and stress–strain cloud diagram were analyzed by the steady state seepage method and THM coupling principle, and the accuracy of the model was verified. Results demonstrate that: (1) As the temperature rises and the peak deformation increases, the sample slowly drops to the residual strength level after the peak stress. (2) The main factor that affects peak strength is confining pressure. In the temperature range of 25 °C–50 °C, the maximum peak strength and peak deformation are increased by heating, and the increases in confining pressure and temperature reduce the reduction coefficient of the residual strength. Moreover, the elastic modulus increases with the increase in confining pressure, but it shows a downward trend when the temperature increases. (3) The plastic deformation zone and stress–strain cloud diagram indicated that when the temperature and osmotic pressure increase, the specimen enters the plastic zone earlier, the effective plastic zone increases, the stress increases, and the deformation is intensified. The proposed method provides a certain reference for the permeability and stability evaluation of rock mass under the conditions of “three-high” (high confining pressure, high hydraulic pressure, and high stress) engineering. Keywords: temperature–seepage–stress coupling, sandstone, mechanical properties


Author(s):  
Anatolii A. KISLITSYN ◽  
Nikita V. Lipatov

This article features experiments on triaxial compression of low-permeable dolomite samples with different confining pressures (2-20 MPa), different pore fluids (dry air, water, CO2), and different temperatures (25-150 °C). The authors have studied the effect of confining pressure, pore fluid and temperature on the strength properties of the studied samples. The results show an increase in the strength with grwoing confining pressure. When the confining pressure increases from 2 to 20 MPa, the compressive strength increases from 86 to 370 MPa. Temperature has a significant effect on rock strength under low confining pressure conditions. With the increasing confining pressure reaching 15 MPa, increasing temperature has little effect on the strength of dolomite samples. Under an effective confining pressure of 5 MPa, the temperature weakening occurs on the dolomite specimens when the temperature exceeds 90 °C. During compression, liquid diffusion occurs in the specimens. Higher water viscosity can cause a temporary decrease in effective confining pressure, which can increase the strength of the rock. More prominent fractures are observed in the samples, and more fluid is injected under CO2 injection conditions, which may be useful for increasing the permeability of the geothermal reservoir. Two groups of experiments have been performed on the samples in this study: the first group of experiments investigated the effect of confining pressure on the fracture stress of core samples, without pore fluid injection; the second group of experiments investigated the effect of water or CO2 and temperature on the mechanical properties of core samples.


2014 ◽  
Vol 501-504 ◽  
pp. 419-425
Author(s):  
Qing Xu ◽  
Jiang Da He ◽  
Hong Qiang Xie ◽  
Ming Li Xiao ◽  
Jian Feng Liu

The mechanical properties of intact rock and rock containing structural plane are very different. From the diversion tunnel of Jinping deep rock site to retrieve the complete block of marble, after a high confining pressure triaxial compression simulation tectonic movements, the formation of structural plane, it represents the mechanical properties of the original rock. On the surface of the marble structure containing triaxial compression creep tests, the results showed: at low confining pressure, the weak marble surface as micro-damage accumulation, the emergence of non-uniform partial destruction, while at high confining pressure, creep curve better continuity and integrity; different confining pressures, marble initial rheology and stability both appear rheological phase, accelerated phase rheological obvious; different confining pressures, the same stage of the axial stress steady flow rate compared with the confining pressure increases, the axial steady state flow rate becomes smaller; marble under test showed the rheological properties, the use of Nishihara model can better demonstrate the rheological properties and determine the rheological parameters for other practical engineering reference.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pengfei Zhang ◽  
Han Liu ◽  
Zhentu Feng ◽  
Chaofeng Jia ◽  
Rui Zhou

Based on large-scale triaxial tests of sandy gravel materials, the strength and deformation characteristics under loading/unloading conditions are analyzed. At the same time, the applicability of the hyperbolic constitutive model to sandy gravel is studied using experimental data. The results indicate that sandy gravel under low confining pressures (0.2 and 0.4 MPa) shows a weak softening trend; the higher the confining pressure, the more obvious the hardening tendency (0.6 and 0.8 MPa) and the greater the peak strength. During unloading tests, strain softening occurs, and the peak strength increases with increasing confining pressure. During loading tests, dilatancy appears when the confining pressure is low (0.2 MPa). With increasing confining pressure (0.4, 0.6, and 0.8 MPa), the dilatancy trend gradually weakens, and the cumulative volume tric strain increases, which reflects the relevance of the stress paths. Through research, it is found that the hyperbolic constitutive model has good applicability to sandy gravel soils, and the corresponding model parameters are obtained.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5065
Author(s):  
Liming Zhang ◽  
Shengqun Jiang ◽  
Jin Yu

Failure tests on sandstone specimens were conducted under different confining pressures and seepage pressures by using an MTS triaxial rock testing machine to elucidate the corresponding correlations of permeability and characteristic stress with confining pressure and pore pressure during deformation. The results indicate that permeability first decreases and presents two trends, i.e., a V-shaped increase and an S-shaped trend during the non-linear deformation stage. The greater the seepage pressure, the greater the initial permeability and the more obvious the V-shaped trend in the permeability. As the confining pressure was increased, the trend in the permeability gradually changed from V- to S-shaped. Compared with the case at a high confining pressure, the decrease of permeability occurred more quickly, the rate of change becomes greater, and the sudden increase observed in the permeability happened earlier under lower confining pressures. Within the range tested, confining pressure exerted a greater effect on the permeability than the seepage pressure. In comparison with the axial strain, volumetric strain better reflected changes in permeability during compaction and dilation of sandstone. The ratio of crack initiation stress to peak strength ranged from 0.37 to 0.50, while the ratio of dilation stress to peak strength changed from 0.58 to 0.72. Permeabilities calculated based on Darcy and non-Darcy flow changed within the same interval, while the change in permeability was different.


Sign in / Sign up

Export Citation Format

Share Document