scholarly journals Fracture Characteristics and Zoning Model of Overburden during Longwall Mining

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhengyi Ti ◽  
Jiazhen Li ◽  
Meng Wang ◽  
Xiaoyan Li ◽  
Zhupeng Jin ◽  
...  

The fracture characteristics and zoning model of overburden during longwall mining are the basis of coal mine disaster prevention. However, the existing theoretical model is inconsistent with the field measurement. In order to further research into the strata’s fracture characteristics and optimize the overburden’s zoning model, we used the elasticity and Winkler foundation theory to establish first fracture and periodic fracture mechanics models of clamped boundary supported by an elastic foundation with a key stratum as the research object. We analyzed the stress distribution characteristics and fracture evolution pattern of the mining-induced key stratum. We analyzed the zoning characteristics of mining-induced overburden and established the zoning model according to different fracture mechanisms. The results show that the key stratum formed a double “O-X” shaped interconnected fracture zone after the first fracture. The key stratum formed a double “C-K” shaped interconnected fracture zone after the periodic fracture. We divided the mining-induced overburden into three zones along the horizontal direction: the original rock zone, the inverted triangular compression-shear fracture zone, and the trapezoidal tensile fracture zone. The study revealed the mechanism of inverted step fracture in the separation zone, explained the fracture mechanism of the coal pillar support zone, and has significant theoretical value for the prevention and control of water disasters, gas outbursts, and strata movement.

2012 ◽  
Vol 170-173 ◽  
pp. 751-754
Author(s):  
Qun Song ◽  
Zhi Lin Yang

In accordance with the occurrence behavior of roof strata and the fracture characteristics of key stratum in shallow seam longwall mining, this paper studied the post-buckling behaviors of key roof stratum in the process of mining by using initial post-buckling theory, which derived a critical load and a breaking span of the main roof during the first weighting, determined the final subsidence for broken key stratum, and presented an application with the example of Daliuta 1203 face. The results indicate that the rock blocks a in are state of non-equilibrium after main roof breaking, the equilibrium path of main roof is unstable from breaking to final subsidence; thick unconsolidated layers above roof have effect on post-buckling behaviors of key stratum; the stability for bifurcation point equilibrium configuration and post-buckling equilibrium path of roof strata could be revealed and an effective method for determining displacement field of imperfection structure could be provided by using initial post -buckling theory.


2005 ◽  
Vol 297-300 ◽  
pp. 2598-2604
Author(s):  
Shan Yong Wang ◽  
S.K. Au ◽  
K.C. Lam ◽  
Chun An Tang

By using numerical code RFPA2D (Rock Failure Process Analysis), the evolution of fracture around cavities subjected to uniaxial and polyaxial compression is examined through a series of model simulation. It is shown from the numerical results that the chain of events leading to the collapse of the cavity may involve all or some of the fractures designated as primary tensile, shear and remote fracture. Numerical simulated results reproduce the evolution of three types of fractures. Under the condition of no confining pressure, the tensile mode dominates with collapse coinciding with the sudden and explosive appearance of the secondary tensile fracture; at moderate higher confining pressure, the tensile mode is depressed, comparatively, the shear effect is strengthened. Nevertheless, tensile fractures especially in remote fractures stage still play a role; at higher pressure, the shear fracture dominates the remote fractures. In addition, the evolution and interact of fractures between multiple cavities is investigated, considering the stress redistribution and transference in compressive and tensile stress field.


2012 ◽  
Vol 170-173 ◽  
pp. 1179-1186
Author(s):  
Cheng Yang ◽  
Hai Bo Bai ◽  
Hu Ren Rong ◽  
Hai Long Li ◽  
Xiao Qi Wei

The hydraulic conductivity fracture zone is the main channel causing inrush disaster in mine. This paper makes a few analysis on the effect of the location of primary key stratum through the theoretical analysis and numerical simulation. The results show that: (1). When the distance from key stratum to coal seam is about 3 times than the height of coal seam, the hydraulic conductivity fracture zone is higher than normal but the caving zone is lower than normal. When the distance from key stratum to coal seam is about 11 times than the height of coal seam, the hydraulic conductivity fracture zone is lower than normal but the caving zone is higher than normal; (2). The effect of Winkler foundation is obvious when the distance from key stratum to coal seam is 7 times than the height of coal seam, more even but the inverse is not; (3). We can certain whether the key stratum is fractured or not according to the hypothetical rock cohesive force expediently.


2021 ◽  
Vol 60 (1) ◽  
pp. 15-24
Author(s):  
Silu Liu ◽  
Yonghao Zhao

Abstract Metals with a bimodal grain size distribution have been found to have both high strength and good ductility. However, the coordinated deformation mechanisms underneath the ultrafine-grains (UFGs) and coarse grains (CGs) still remain undiscovered yet. In present work, a bimodal Cu with 80% volume fraction of recrystallized micro-grains was prepared by the annealing of equal-channel angular pressing (ECAP) processed ultrafine grained Cu at 473 K for 40 min. The bimodal Cu has an optimal strength-ductility combination (yield strength of 220 MPa and ductility of 34%), a larger shear fracture angle of 83∘ and a larger area reduction of 78% compared with the as-ECAPed UFG Cu (yield strength of 410 MPa, ductility of 16%, shear fracture angle of 70∘, area reduction of 69%). Grain refinement of recrystallized micro-grains and detwinning of annealing growth twins were observed in the fractured bimodal Cu tensile specimen. The underlying deformation mechanisms for grain refinement and detwinning were analyzed and discussed.


2021 ◽  
Author(s):  
Elena Pasternak ◽  
Arcady Dyskin

<p>Inter-sonic (faster than the shear wave velocity) propagation of zones of shear over faults are observed both in the Earth’s crust and in specially designed laboratory experiments. This is usually interpreted as propagation of shear fractures caused by postulated special fracture mechanisms. This interpretation is however at variance with experimental facts that shear fractures in solids do not propagate in their own planes, kinking instead. Extensive (and fast) in-plane shear fracture propagation seems to only be possible over pre-existing planes considerably weaker than the surrounding material. A limiting case of fracture propagation over such a weak plane is the propagation of a sliding zone resisted by friction only. Another limiting case is shearing over a narrow elastic layer (shear Winkler layer) without rupture. The shear Winkler layer models both traditional elastic connections (positive stiffness) and rotation of non-spherical particles of the fault gouge (negative stiffness), e.g. [1, 2].</p><p>In both cases propagation of sliding/shear zone also involve longitudinal deformation in the surrounding material. Using a configuration different from [3, 4] we demonstrate that the presence of the longitudinal deformation makes the sliding/shear zone propagate with p-wave velocity. Propagation of such zones create seismic signals with power spectra resembling those observed in earthquakes.</p><p><strong>Acknowledgement</strong>.   AVD and EP acknowledge support from the Australian Research Council through project DP190103260.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shengrong Xie ◽  
Xiaoyu Wu ◽  
Dongdong Chen ◽  
Yaohui Sun ◽  
Junchao Zeng ◽  
...  

Automatic roadways on gob-side entry retaining with no-pillars are used for longwall mining technology. The mining technology with no-pillars can recover coal pillar resources and reduce the amount and cost of roadway excavations. Automatic roadway technology for cutting roofs by combined support on gob-side entry retaining with no-pillars is adopted for the condition of thick immediate roof and medium-thick coal seam mining, cutting off the immediate roof and the main roof on the gob by combined support. The fractured roof forms gangue blocks to fill the gob and loads the overlying strata. The gangue control system is placed on the roadside, which controls the caving gangue to form a gangue rib. In this paper, the viewpoints and key technologies (the roof-cutting technology, the reinforcement and support technology, the gangue rib control technology, and the auxiliary support technology) of automatic roadway technology for cutting roofs by combined support on the gob-side entry retaining with no-pillars are introduced. Furthermore, the formation and control process are explained. The numerical simulation is used to simulate and analyze the roof hanging and the roof cutting structures. In addition, a field engineering test is performed. The field test shows that automatic roadway technology for cutting roofs by combined support on gob-side entry retaining with no-pillars is feasible. This process uses construction techniques and technologies to meet on-site production needs. The combined support has high resistance strength and is shrinkable. In engineering applications, the combined support has a low damage rate. The deformation of the automatic roadway with gob-side entry retaining is small, and the control effect is significant.


Sign in / Sign up

Export Citation Format

Share Document