scholarly journals Downregulation of the Proton-Activated Cl- Channel TMEM206 Inhibits Malignant Properties of Human Osteosarcoma Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Fei Peng ◽  
Haohuan Li ◽  
Jianping Li ◽  
Zhe Wang

Transmembrane protein 206 (TMEM206), a proton-activated chloride channel, has been implicated in various biochemical processes, including bone metabolism, and has emerged as a novel cancer-related protein in multiple tumor types. However, its role in primary malignant bone tumors, particularly in osteosarcoma (OS), remains unclear. This study is aimed at exploring the effects of TMEM206 gene silencing on the proliferation, migration, invasion, and metastasis of human OS cells in vitro and in vivo using an shRNA-knockdown strategy. We found that TMEM206 is frequently overexpressed and that high levels of TMEM206 correlated with clinical stage and pulmonary metastasis in patients with OS. We provided evidence that TMEM206-silenced OS cancer cells exhibit decreased proliferation, migration, and invasion in vitro. Mechanistically, we identified β-catenin, a key member of Wnt/β-catenin signaling, as a downstream effector of TMEM206. TMEM206 silencing inhibits the Wnt/β-catenin signaling pathway in expression rescue experiments, confirming that TMEM206 silencing attenuates OS cell tumorigenic behavior, at least in part, via the β-catenin mediated downregulation of Wnt/β-catenin signaling. More importantly, TMEM206 knockdown-related phenotype changes were replicated in a xenograft nude mouse model where pulmonary metastases of OS cells were suppressed. Together, our results demonstrate that silencing TMEM206 negatively modulates the Wnt/β-catenin signaling pathway via β-catenin to suppress proliferation, migration, invasion, and metastasis in OS carcinogenesis, suggesting TMEM206 as a potential oncogenic biomarker and a potential target for OS treatment.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Wang ◽  
Liangying Dan ◽  
Qianqian Li ◽  
Lili Li ◽  
Lan Zhong ◽  
...  

Abstract Background Recent studies suggested that ZMYND10 is a potential tumor suppressor gene in multiple tumor types. However, the mechanism by which ZMYND10 inhibits breast cancer remains unclear. Here, we investigated the role and mechanism of ZMYND10 in breast cancer inhibition. Results ZMYND10 was dramatically reduced in multiple breast cancer cell lines and tissues, which was associated with promoter hypermethylation. Ectopic expression of ZMYND10 in silenced breast cancer cells induced cell apoptosis while suppressed cell growth, cell migration and invasion in vitro, and xenograft tumor growth in vivo. Furthermore, molecular mechanism studies indicated that ZMYND10 enhances expression of miR145-5p, which suppresses the expression of NEDD9 protein through directly targeting the 3'-untranslated region of NEDD9 mRNA. Conclusions Results from this study show that ZMYND10 suppresses breast cancer tumorigenicity by inhibiting the miR145-5p/NEDD9 signaling pathway. This novel discovered signaling pathway may be a valid target for small molecules that might help to develop new therapies to better inhibit the breast cancer metastasis.


Author(s):  
Zhongbing Wu ◽  
Yang Zhao ◽  
Fuyang Yu ◽  
Huijuan Shi ◽  
Jing Li

Background: In recent years, there is an increasing interest in using Traditional Chinese medicine (TCM) and their patents for the treatment of cancers. Qigefang (QGF) is a TCM formula and has been used for the treatment of metastatic esophageal cancer in China. However, its therapeutic effect on tumors and its mechanism of action are largely unknown. The aim of this study is to explore the role of QGF in the treatment of metastasis of esophageal squamous cell carcinoma(ESCC). Methods: Human esophageal carcinoma cell line KYSE150 was used for this study. CCK-8 assay was used to determine the cytotoxicity of QGF. The KYSE150 cells were treated with QGF to determine its effect on cell migration (cell scratch assay and imaging) and invasion (Transwell system based with Matrigel assay). Western blotting was used to investigate the effect of QGF on relevant molecules of signaling pathways. A mouse model of lung metastasis of esophageal cancer was established by injecting the KYSE150-Luc cells through the tail vein. Small animal imaging system was used to observe tumor metastasis in the mice. Results: QGF reduced cell migration and invasion of KYSE150 cells. QGF significantly inhibited lung metastasis in nude mice. Further study revealed that the expression of Growth arrest-specific 6 (Gas6), Anexelekto (Axl), N-nuclear factor-kappa B (NF-κB) and matrix metalloproteinase-9 (MMP-9) proteins were decreased both in vitro and in vivo upon treatment with QGF. Conclusion: QGF could prevent invasion and metastasis of esophageal cancer by inhibiting the Gas6/Axl signaling pathway


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 325 ◽  
Author(s):  
Xiaojuan Li ◽  
Yunping Tang ◽  
Fangmiao Yu ◽  
Yu Sun ◽  
Fangfang Huang ◽  
...  

We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kun Wu ◽  
Yuan-Yuan Mao ◽  
Nan-Nan Han ◽  
Hanjiang Wu ◽  
Sheng Zhang

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant neoplasm; it is associated with high morbidity and mortality. Thus, understanding the molecular mechanisms underlying its initiation and progression is critical for establishing the most appropriate treatment strategies. We found that urokinase-type plasminogen activator (PLAU1) was upregulated and associated with poor prognosis in HNSCC. Silencing of PLAU1 inhibited the proliferation, colony-formation, migration, and invasion abilities of HNSCC cells in vitro and reduced the expression of matrix metalloproteinase 1 (MMP1), whereas PLAU1 overexpression significantly enhanced the growth, the colony-formation, migration, and invasion abilities, and the xenograft tumor growth of HNSCC cells in vivo and increased the expression of MMP1. The Co-IP assay verified that PLAU1 interacted with MMP1. A positive correlation between PLAU1 and MMP1 expression was observed in HNSCC samples. si-RNAs against MMP1 reversed the aggressive effects of PLAU1 overexpression in HNSCC. Taken together, our data revealed that PLAU1 facilitated HNSCC cell proliferation, invasion, and metastasis via interaction with MMP1.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2021 ◽  
Author(s):  
Zhiyan Hu ◽  
Jiaxian Zhu ◽  
Yidan Ma ◽  
Ting Long ◽  
Lingfang Gao ◽  
...  

Abstract Background CIP4 (Cdc42-interacting protein 4), a member of the F-BAR family which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and closely associated with tumor invadopodia formation. However, the specific mechanism of the interaction between CIP4 and Cdc42 as well as the downstream signaling pathway in response in colorectal cancer (CRC) remains unknown, which is worth exploring for its impact on tumor infiltration and metastasis. Methods Immunohistochemistry and western blot analyses were performed to detect the expression of CIP4 and Cdc42. Their relationship with CRC clinicopathological characteristics was further analyzed. Wound-healing, transwell migration and invasion assays tested the effect of CIP4 on cells migration and invasion ability in vitro, and the orthotopic xenograft colorectal cancer mouse mode evaluated the tumor metastasis in vivo. The invadopodia formation and function were assessed by immunofluorescence, scanning electron microscopy (SEM) and matrix degradation assay. The interaction between CIP4 and Cdc42 was confirmed by co-immunoprecipitation (co-IP) and GST-Pull down assays. Immunofluorescence was used to observed the colocalization of CIP4, GTP-Cdc42 and invadopodia. The related downstream signaling pathway was investigated by western blot and immunofluorescence. Results CIP4 expression was significantly higher in human colorectal cancer tissues and correlated with the CRC infiltrating depth and metastasis as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and the tumor metastasis in vivo, while overexpression of CIP4 confirmed the opposite situation by promoting invadopodia formation and matrix degradation ability. In addition, we identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4 to participate in this process. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression CRC cells contributing to invadopodia formation while inhibition of either CIP4 or Cdc42 led to suppression of NF-κB pathway resulted in decrease quantity of invadopodia. Conclusion Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Tao Chen ◽  
Fu-Kuan Zhong

Objective. To determine the expression levels of KIF18A in lung adenocarcinoma and its relationship with the clinicopathologic features of patients undergoing radical colectomy and explore the potential role in the progression of lung adenocarcinoma. Methods. Immunohistochemical assays were performed to explore the expression levels of KIF18A in 82 samples of lung adenocarcinoma and corresponding normal tissues. According to the levels of KIF18A expression in lung adenocarcinoma tissue samples, patients were classified into the KIF18A high expression group and low expression group. Clinical data related to the perioperative clinical features (age, gender, smoking, tumor size, differentiation, clinical stage, and lymph node metastasis), the potential correlation between KIF18A expression levels, and clinical features were analyzed, and the effects of KIF18A on lung adenocarcinoma cell proliferation, migration, and invasion were measured by colony formation assay, MTT assay, wound healing assay, and transwell assays. The possible effects of KIF18A on tumor growth and metastasis were measured in mice through tumor growth and tumor metastasis assays in vivo. Results. KIF18A in lung adenocarcinoma tissues. Further, KIF18A was significantly associated to clinical characteristic features including the tumor size (P=0.033) and clinical stage (P=0.041) of patients with lung adenocarcinoma. Our data also investigated that KIF18A depletion dramatically impairs the proliferation, migration, and invasion capacity of lung adenocarcinoma cells in vitro and inhibits tumor growth and metastasis in mice. Conclusions. Our study reveals the involvement of KIF18A in the progression and metastasis of lung adenocarcinoma and provides a novel therapeutic target for the treatment of lung adenocarcinoma.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 192 ◽  
Author(s):  
Yuli Yan ◽  
Xingyu Liu ◽  
Jie Gao ◽  
Yin Wu ◽  
Yuxin Li

Background: Dracocephalum peregrinum L., a traditional Kazakh medicine, has good expectorant, anti-cough, and to some degree, anti-asthmatic effects. Diosmetin (3′,5,7-trihydroxy-4′-methoxyflavone), a natural flavonoid found in traditional Chinese herbs, is the main flavonoid in D. peregrinum L. and has been used in various medicinal products because of its anticancer, antimicrobial, antioxidant, estrogenic, and anti-inflammatory effects. The present study aimed to investigate the effects of diosmetin on the proliferation, invasion, and migration of glioma cells, as well as the possible underlying mechanisms. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound, and Transwell assays were used to demonstrate the effects of diosmetin in glioma. Protein levels of Bcl-2, Bax, cleaved caspase-3, transforming growth factor-β (TGF-β), E-cadherin, and phosphorylated and unphosphorylated smad2 and smad3 were determined by Western blots. U251 glioma cell development and progression were measured in vivo in a mouse model. Results: Diosmetin inhibited U251 cell proliferation, migration, and invasion in vitro, the TGF-β signaling pathway, and Bcl-2 expression. In contrast, there was a significant increase in E-cadherin, Bax, and cleaved caspase-3 expression. Furthermore, it effectively reduced the tumorigenicity of glioma cells and promoted apoptosis in vivo. Conclusion: The results of this study suggest that diosmetin suppresses the growth of glioma cells in vitro and in vivo, possibly by activating E-cadherin expression and inhibiting the TGF-β signaling pathway.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


Sign in / Sign up

Export Citation Format

Share Document