scholarly journals Facile Production of Graphene/Polypropylene Composites with Enhanced Electrical and Thermal Properties through In Situ Artificial Latex Preparation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lijing Han ◽  
Hairui Wang ◽  
Yingxia Zong ◽  
Chengzhong Zong

In order to obtain the unique properties of graphene-based composites, to realize homogeneous dispersion of graphene throughout the polymer matrix remains the key challenge. In this work, edge-oxidized graphene/polypropylene (EOGr/PP) composites with well-dispersed EOGr in PP matrix, synchronously exhibiting high electrical conductivity and thermal property, were simply fabricated for the first time using a novel strategy by in situ artificial PP latex preparation in the presence of EOGr based on solution-emulsification technique. The good dispersion state of EOGr in the PP matrix was demonstrated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A blue shift in Raman G peak of the EOGr nanosheets was observed in the EOGr/PP composites, indicating the strong interactions between the EOGr nanosheets and the PP matrix. The onset crystallization and crystallization peak temperatures increased as the EOGr loading increases due to its good nucleating ability. An improved thermal stability of EOGr/PP composites was observed as evaluated by TGA. The EOGr/PP composites showed an insulator-to-conductor percolation transition in between that of 1 and 2 wt% EOGr content. Such strategy provides a very effective pathway to fabricate high-performance nonpolar polymer/graphene composites with excellent dispersion state of graphene.

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 593 ◽  
Author(s):  
Tao Wan ◽  
Xiaojun Yin ◽  
Chengjun Pan ◽  
Danqing Liu ◽  
Xiaoyan Zhou ◽  
...  

Single-walled carbon nanotubes (SWCNTs) incorporated with π-conjugated polymers, have proven to be an effective approach in the production of advanced thermoelectric composites. However, the studied polymers are mainly limited to scanty conventional conductive polymers, and their performances still remain to be improved. Herein, a new planar moiety of platinum acetylide in the π-conjugated system is introduced to enhance the intermolecular interaction with the SWCNTs via π–π and d–π interactions, which is crucial in regulating the thermoelectric performances of SWCNT-based composites. As expected, SWCNT composites based on the platinum acetylides embedded polymers displayed a higher power factor (130.7 ± 3.8 μW·m−1·K−2) at ambient temperature than those without platinum acetylides (59.5 ± 0.7 μW·m−1·K−2) under the same conditions. Moreover, the strong interactions between the platinum acetylide-based polymers and the SWCNTs are confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yanqiang Zhou ◽  
Yinhui Yang ◽  
Meihua Ma ◽  
Zhian Sun ◽  
Shanshan Wu ◽  
...  

A novel strategy based on imazethapyr (IM) molecular-imprinting polymers (MIPs) grafted onto the surface of chloromethylation polystyrene resin via surface-initiated atom transfer radical polymerization (SI-ATRP) for specific recognition and sensitive determination of trace imazethapyr in soil samples was developed. The SI-ATRP was performed by using methanol-water (4 : 1, v/v) as the solvent, acrylamide as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the cross-linker, imazethapyr as the template, and CuBr/2,2′-bipyridine as the catalyst. The resulting MIPs were characterized by elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Then, the binding selectivity, adsorption capacity, and reusability of the MIPs were evaluated. The results indicated that the prepared MIPs exhibited specific recognition and high selectivity for imazethapyr. The MIPs were further used as solid-phase extraction (SPE) materials coupled with high-performance liquid chromatography (HPLC) for selective extraction and detection of trace imazethapyr from soil samples. The results showed that good linearity was observed in the range of 0.10–5.00 μg/mL, with a correlation coefficient of 0.9995. The limit of detection (LOD) of this method was 15 ng/g, and the extraction recoveries of imazethapyr from real samples were in the range of 91.1–97.5%, which proved applicable for analysis of trace imazethapyr in soils. This work proposed a sensitive, rapid, and convenient approach for determination of trace imazethapyr in soil samples.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


Sign in / Sign up

Export Citation Format

Share Document