scholarly journals Identification of a Two-m6A RNA Methylation Regulator Risk Signature as an Independent Prognostic Biomarker in Papillary Renal Cell Carcinoma by Bioinformatic Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Feilong Yang ◽  
Guojiang Zhao ◽  
Liyuan Ge ◽  
Yimeng Song ◽  
Kai Hong ◽  
...  

N6-Methyladenosine (m6A), the most common form of mRNA modification, is dynamically regulated by the m6A RNA methylation regulators, which play an important role in regulating the gene expression and phenotype in both health and disease. However, the role of m6A in papillary renal cell carcinoma (pRCC) is unknown. The purpose of this work is to investigate the prognostic value of m6A RNA methylation regulators in pRCC; thus, we can build a risk score model based on m6A RNA methylation regulators as a risk signature for predicting the prognosis of pRCC. Here, we investigated the expression and corresponding clinical data by bioinformatic analysis based on 289 pRCC tissues and 32 normal kidney tissues obtained from TCGA database. As a result, we identified the landscape of m6A RNA methylation regulators in pRCC. We grouped all pRCC patients into two clusters by consensus clustering to m6A RNA methylation regulators, but we found that the clusters were not correlated to the prognosis and clinicopathological features of pRCC. Therefore, we additionally built a two-m6A RNA methylation regulator risk score model as a risk signature by the univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. The risk signature was constructed as follows: 0.031 HNRNPC + 0.199 KIAA 1429 . It revealed that the risk score was associated with the clinicopathological features such as pT status and pN status of pRCC. More importantly, the risk score was an independent prognostic marker for pRCC patients. Thus, m6A RNA methylation regulators contributed to the malignant progression of pRCC influencing its prognosis.

2020 ◽  
Author(s):  
Chao Qin ◽  
Guangyao Li ◽  
Xiyi Wei ◽  
Shifeng Su ◽  
Shangqian Wang ◽  
...  

Abstract Objective: Increasing evidence has indicated an association between immune micro-environment in clear cell renal cell carcinoma (ccRCC) and clinical outcomes. The aim of this research is to comprehensively investigate the effect of tumor immune genes on the prognosis of ccRCC patients. Methods: 2498 immune genes were downloaded from ImmPort database. Additionally, we identified and downloaded the transcriptome data of patients with ccRCC from the TCGA database through the R package, as well as relevant clinical information. We apply certain survival R package to analyse the survival of hub-genes before analyzing the effect of immune genes on the prognosis of clear cell renal cell carcinoma (ccRCC) utilizing Cox regression analysis. Based on the statistical correlation between hub immune gene and survival ,immune risk score model was set up.We finally constructed a nomogram to predict the survival rate of ccRCC overally. In addition, whether the immune gene risk score model is an independent prognostic factor for ccRCC is comprehensively considered applying multivariate cox regression analysis. It is worth noting that throughout the data analysis, P< 0.05 was recognized to be of significance statistically. Results: The results of the difference analysis showed that 556 immune genes exhibited differential expression between normal and ccRCC tissues (p<0. 05). Univariate cox regression analysis revealed 43 immune genes statistically correlated with ccRCC related survival risk (P<0.05). In addition, a 18-genes based immune genes risk scoring model was constructed through lasso COX regression analysis. KM curve indicated that patients in high-risk were associated with poor outcomes (p<0.001). ROC curve indicated that the immune risk score model was reliable in predicting survival risk (5-year OS, AUC=0.802). Our model showed satisfying AUC and survival correlation in the validation dataset ( 5-year OS AUC=0.705, P<0.001). Furthermore, multivariate cox regression analysis confirmed that the immune risk score model was an independent factor for predicting the prognosis of ccRCC. A nomogram was established to comprehensively predict the survival of ccRCC patients with the results of multivariate cox regression analysis. Finally, we found that 15 immune genes and risk scores were significantly associated with clinical factors and prognosis, and were involved in multiple oncogenic pathways.Conclusion: Collectively, tumor immune genes played an essential role in the prognosis of ccRCC. Furthermore, immune risk score was an independent predictive factor of ccRCC, indicating a poor survival.


Author(s):  
Qian Li ◽  
Chen-Chen Ren ◽  
Yan-Nan Chen ◽  
Li Yang ◽  
Feng Zhang ◽  
...  

Ovarian cancer (OC) is the leading cause of cancer-related death among all gynecological tumors. N6-methyladenosine (m6A)-related regulators play essential roles in various tumors, including OC. However, the expression of m6A RNA methylation regulators and the related regulatory network in OC and their correlations with prognosis remain largely unknown. In the current study, we obtained the genome datasets of OC from GDC and GTEx database and analyzed the mRNA levels of 21 key m6A regulators in OC and normal human ovarian tissues. The expression levels of 7 m6A regulators were lower in both the OC tissues and the high-stage group. Notably, the 5-year survival rate of patients with OC presenting low VIRMA expression or high HNRNPA2B1 expression was higher than that of the controls. Next, a risk score model based on the three selected m6A regulators (VIRMA, IGF2BP1, and HNRNPA2B1) was built by performing a LASSO regression analysis, and the moderate accuracy of the risk score model to predict the prognosis of patients with OC was examined by performing ROC curve, nomogram, and univariate and multivariate Cox regression analyses. In addition, a regulatory network of miRNAs-m6A regulators-m6A target genes, including 2 miRNAs, 3 m6A regulators, and 47 mRNAs, was constructed, and one of the pathways, namely, miR-196b-5p-IGF2BP1-PTEN, was initially validated based on bioinformatic analysis and assay verification. These results demonstrated that the risk score model composed of three m6A RNA methylation regulators and the related network of miRNAs-m6A regulators-m6A target genes is valuable for predicting the prognosis of patients with OC, and these molecules may serve as potential biomarkers or therapeutic targets in the future.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1738-1738 ◽  
Author(s):  
Ya Zhang ◽  
Xiaosheng Fang ◽  
Na Chen ◽  
Xiao Lv ◽  
Xueling Ge ◽  
...  

Introduction N6-methyladenosine (m6A) RNA methylation is the most abundant epitranscriptomic modification, dynamically installed by the m6A methyltransferases (termed as "writers"), reverted by the demethylases (termed as "erasers"), and recognized by m6A binding proteins (termed as "readers"). Emerging evidence suggests that m6A RNA methylation regulates RNA stability, and participates in the pathogenesis of multiple diseases including cancers. Nevertheless, the role of m6A RNA methylation in chronic lymphocytic leukemia (CLL) remains to be unveiled. Herein, we hypothesized that m6A RNA methylation contributed to the tumorigenesis and maintenance of CLL. Moreover, the risk-prediction model integrated with the m6A regulators could serve as a novel and effective prognostic indicator in CLL. This study aimed to identify robust m6A RNA methylation-associated fingerprints for risk stratification in patients with CLL. Methods A total of 714 de novo CLL patients from 4 cohorts (China, Spain, Germany and Italy) were enrolled with informed consents. EpiQuik m6A RNA methylation colorimetric quantification assay was utilized to assess m6A RNA methylation levels. LASSO Cox regression algorithm was performed to calculate m6A RNA methylation-associated risk score (short for "m6A risk score") in R software. Besides, Kaplan-Meier survival analysis with log-rank test, univariate and multivariate Cox regression analyses and ROC curve analysis of overall survival (OS) were conduct to explore the prognostic value of m6A signature in CLL. Furthermore, RNA-seq, MeRIP-seq, Ribo-seq, functional enrichment analyses in silico and preclinical experiments ex vivo were applied to confirm the biological mechanism of the m6A regulators in CLL. Results In the present study, we performed a comprehensive analysis to dissect the role of m6A RNA methylation regulators in CLL. Compared with normal B cells from healthy donors, obvious decreased level of m6A RNA methylation was observed in primary CLL cells (p<0.01; Figure 1A). In addition, down-regulated m6A RNA methylation was also detected in CLL cell lines MEC1 and EHEB (p<0.05; Figure 1A). Then, we further investigated the association of the m6A RNA methylation regulators with clinical outcomes of CLL patients. By LASSO Cox regression analysis in 486 CLL patients, the m6A risk score was established with the coefficients of fourteen m6A regulators at the minimum lambda value of 0.00892 (Figure 1B-C). Based on the median risk score as the cut-off value, a clear distribution pattern was delineated in CLL patients (Figure 1D). Kaplan-Meier curves showed stratified high-risk patients presented significantly shorter OS versus the low-risk group (HR=4.477, p<0.001; Figure 2A). Besides, m6A risk score also predicts inferior prognosis in stable subgroup (HR=3.097, p=0.037; Figure 2B), and progressed/ relapsed subgroup (HR=3.325, p=0.001; Figure 2C). Moreover, univariate, multivariate cox regression analyses and ROC curve confirmed high m6A risk score as an independent survival predictor in CLL patients (p<0.001; Figure 2D-E). Thereafter, the clinicopathological relevance and underlying mechanism of m6A risk score were explored. Significant elevated m6A risk score was detected in patients with unfavorable treatment responses compared with stable status (p<0.001; Figure 3A). Furthermore, CLL patients with advanced Binet stage, positive ZAP-70 and unmutated IGHV present increased m6A risk score (p<0.05; Figure 3B-C). Intriguingly, we also observed the significantly negative correlation between highrisk score and 13q14 deletion, in accordance with patients' inferior outcome (p=0.047; Figure 3D). Moreover, Pearson correlation analysis, STRING interactive network and functional enrichment analyses deciphered that the m6A regulators exerted crucial roles in CLL progression potentially via modulating RNA metabolism and oncogenic pathways (Figure 4A-C). Conclusion To date, our study provides evidence for the first time that reduced m6A RNA methylation contributes to the tumorigenesis of CLL. Distinct m6A risk scoreis demonstrated as an efficient tool facilitating prognosis evaluation in CLL patients. However, validation of the signature in more independent cohorts are warranted. Further interrogations will be elucidated on the biological mechanism of m6A regulators, highlighting insights into pathogenesis and therapy strategy of CLL. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Shuaishuai Huang ◽  
Xiaodong Qing ◽  
Qiuzi Lin ◽  
Qiaoling Wu ◽  
Xue Wang ◽  
...  

Abstract Background: m6A RNA methylation and tumor microenvironment (TME) have been reported to play important roles in the progression and prognosis of clear cell renal cell carcinoma (ccRCC). However, whether m6A RNA methylation regulators affect TME in ccRCC remains unknown. Thus, the current study is designed to comprehensively evaluate the effect of m6A RNA methylation regulators on TME in ccRCC.Methods: Transcriptome data of ccRCC was obtained from The Cancer Genome Atlas (TCGA) database. Consensus clustering analysis was conducted based on the expressions of m6A RNA methylation regulators. Survival differences were evaluated by Kaplan-Meier (K-M) analysis between the clusters. DESeq2 package was used to analyze the differentially expressed genes (DEGs) between the clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were analyzed by ClusterProfiler R package. Immune, stromal and ESTIMATE scores were assessed by ESTIMATE algorithm. CIBERSORT algorithm was applied to evaluate immune infiltration. The expressions of human leukocyte antigen (HLA), immune checkpoint molecules, and Th1/IFNγ gene signature associated with TME were also compared between the clusters. TIDE algorithm and subclass mapping were used to analyze the clinical response of different clusters to PD-1 and CTLA-4 blockade. Results: The expressions of fifteen m6A regulators were significantly different between ccRCC and normal kidney tissues. Based on the expressions of those fifteen m6A regulators, two clusters were identified by consensus clustering, in which cluster 1 had better overall survival (OS). A total of 4,429 DEGs were found between the two clusters, and were enriched into immune-related biological processes. Further analysis of the two clusters’ TME showed that cluster 1 had lower immune and ESTIMATE scores, higher expressions of HLA and lower expressions of immune checkpoint molecules. Besides, immune infiltration and the expressions of Th1/IFNγ gene signature also have significant differences between two clusters. Conclusions: Our study revealed that m6A regulators were important participants in the development of ccRCC, with a close relationship with TME.


2020 ◽  
Author(s):  
Peng Wang ◽  
Kai Huang ◽  
Miaojing Wu ◽  
Qing Hu ◽  
Chuming Tao ◽  
...  

Abstract Background: Glioma is the most common primary intracranial tumor, accounting for the vast majority of intracranial malignant tumors. Aberrant expression of RNA:5-methylcytosine(m5C) methyltransferases has recently been the focus of research relating to the occurrence and progression of tumors. However, the prognostic value of RNA:m5C methyltransferases in glioma remains unclear. This study investigated RNA: m5C methyltransferase expression and defined its clinicopathological signature and prognostic value in gliomas. Methods: We systematically studied the RNA-sequence data of RNA:m5C methyltransferases underlying gliomas in the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets and identified different subtypes using Consensus clustering analysis. Gene Ontology (GO) and Gene Set Enrichment analysis (GSEA) was used to annotate the function of these genes. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm analyses were performed to construct the risk score model. Kaplan-Meier method and Receiver operating characteristic (ROC) curves were used to assess the overall survival of glioma patients. Additionally, Cox proportional regression model analysis was developed to address the connections between the risk scores and clinical factors. Results: Consensus clustering of RNA:m5C methyltransferases identified three clusters of gliomas with different prognostic and clinicopathological features. Meanwhile, Functional annotations demonstrated that RNA:m5C methyltransferases were significantly associated with the malignant progression of gliomas. Thereafter, five RNA:m5C methyltransferase genes were screened to construct a risk score model which can be used to predict not only overall survival but also clinicopathological features in gliomas. ROC curves revealed the significant prognostic ability of this signature. In addition, Multivariate Cox regression analyses indicated that the risk score was an independent prognostic factor for glioma outcome. Conclusion: We demonstrated the role of RNA:m5C methyltransferases in the initiation and progression of glioma. We have expanded on the understanding of the molecular mechanism involved, and provided a unique approach to predictive biomarkers and targeted therapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Maolin Hu ◽  
Jiangling Xie ◽  
Huiming Hou ◽  
Ming Liu ◽  
Jianye Wang

Background. Few previous studies have comprehensively explored the level of DNA methylation and gene expression in ccRCC. The purpose of this study was to identify the key clear cell renal cell carcinoma- (ccRCC-) related DNA methylation-driven genes (MDG) and to build a prognostic model based on the level of DNA methylation. Methods. RNA-seq transcriptome data and DNA methylation data were obtained from The Cancer Genome Atlas. Based on the MethylMix algorithm, we obtain ccRCC-related MDG. The univariate and multivariate Cox regression analyses were employed to investigate the correlation between patient overall survival and the methylation level of each MDG. Finally, a prognosis risk score was established based on a linear combination of the regression coefficient derived from the multivariate Cox regression model (β) multiplied with the methylation level of the gene. Results. 19 ccRCC-related MDG were identified. Three MDG (NCKAP1L, EVI2A, and BATF) were further screened and integrated into a prognostic risk score model, risk score=3.710∗methylation level of NCKAP1L+−3.892∗methylation level of EVI2A+−3.907∗methylation level of BATF. The risk model was independent from conventional clinical characteristics as a prognostic factor for ccRCC (HR=1.221, 95% confidence interval: 1.063–1.402, and P=0.005). The joint survival analysis showed that the gene expression and methylation levels of the prognostic genes EVI2A and BATF were significantly related with prognosis. Conclusion. This study provided an important bioinformatics foundation for in-depth studies of ccRCC DNA methylation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Honghong Pan ◽  
Liefu Ye ◽  
Qingguo Zhu ◽  
Zesong Yang ◽  
Minxiong Hu

AbstractThe study aimed to compare the clinicopathological features and prognosis between type I and type II papillary renal cell carcinoma (PRCC) and to investigate whether the subtypes of PRCC would affect oncological outcomes. A total of 102 patients with PRCC were recruited, of which 42 were type I PRCC and 60 type II. The clinicopathological features and oncologic outcomes of the patients were evaluated. The type II cases had a higher WHO/ISUP grading (P < 0.001), T (P = 0.003), N (P = 0.010) stage and stage grouping (P = 0.011) than the type I. During a median follow-up period of 61.4 months, 1-year cancer specific survival (CSS) of the type I was 100%, 5-year CSS was 95.2%, the 1-year CSS of the type II was 96.2%, and 5-year CSS was 75.7%. The univariate analysis showed that subtype, symptoms, TNM, stage grouping, WHO/ISUP grading and surgical methods appeared to affect prognosis of the patients with PRCC. However, multivariate analysis revealed that only stage grouping was the independent risk factor. After the stage grouping factor was adjusted for the analysis, there were no statistically significant differences in CSS (P = 0.214) and PFS (P = 0.190) between the localized type I and type II PRCC groups. Compared with type I PRCC, type II had higher pathological T, N stage and WHO/ISUP grading. However, it was the Stage grouping that made a great difference to oncological outcomes, rather than the subtype of PRCC.


2020 ◽  
Author(s):  
Zheng Wang ◽  
Yanlong Zhang ◽  
Shuaishuai Fan ◽  
Yuan Ji ◽  
Jianchao Ren ◽  
...  

Abstract Background: Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. This study aimed to establish a nomogram to predict ccRCC prognosis.Methods: By integrating DNA methylation (DNAm) data and gene expression profiles of ccRCC obtained from The Cancer Genome Atlas (TCGA), DNAm-driven genes were identified by differential and correlation analyses. Next, risk genes were selected by multiple algorithms (univariate Cox and Kaplan-Meier survival analyses) and various databases (TCGA, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and The Human Protein Atlas (HPA)). A risk score model was established by multivariate Cox analyses. ConsensusPathDB and Gene Set Enrichment Analysis (GSEA) were used to identify the biological functions of the selected genes. After comprehensively evaluating the clinical data, we established and assessed a dynamic nomogram available on a webserver.Results: In total, 220 differentially expressed DNAm-driven genes were identified, and five-gene signature (EPB41L4B, HHLA2, IFI16, CMTM3, and XAF1) was related to overall survival (OS). Next, we integrated the DNAm-driven genes into the prognostic risk score model and found that age, histologic grade, pathological stage, and risk level were correlated with OS in ccRCC patients. Based on these variables, a dynamic nomogram was established to predict the ccRCC prognosis. Finally, Functional enrichment analysis showed that the functions of these genes were relevant to immune reactions.Conclusions: We identified a 5 DNAm-driven gene signature whose altered status was highly correlated with ccRCC patient OS. We constructed a dynamic nomogram to provide individualized survival predictions for ccRCC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Binghai Chen ◽  
Di Dong ◽  
Qin Yao ◽  
Yuanzhang Zou ◽  
Wei Hu

Abstract Background Papillary renal cell carcinoma (pRCC) ranks second in renal cell carcinoma and the prognosis of pRCC remains poor. Here, we aimed to screen and identify a novel prognostic cancer-related lncRNA signature in pRCC. Methods The RNA-seq profile and clinical feature of pRCC cases were downloaded from TCGA database. Significant cancer-related lncRNAs were obtained from the Immlnc database. Differentially expressed cancer-related lncRNAs (DECRLs) in pRCC were screened for further analysis. Cox regression report was implemented to identify prognostic cancer-related lncRNAs and establish a prognostic risk model, and ROC curve analysis was used to evaluate its precision. The correlation between RP11-63A11.1 and clinical characteristics was further analyzed. Finally, the expression level and role of RP11-63A11.1 were studied in vitro. Results A total of 367 DECRLs were finally screened and 26 prognostic cancer-related lncRNAs were identified. Among them, ten lncRNAs (RP11-573D15.8, LINC01317, RNF144A-AS1, TFAP2A-AS1, LINC00702, GAS6-AS1, RP11-400K9.4, LUCAT1, RP11-63A11.1, and RP11-156L14.1) were independently associated with prognosis of pRCC. These ten lncRNAs were incorporated into a prognostic risk model. In accordance with the median value of the riskscore, pRCC cases were separated into high and low risk groups. Survival analysis indicated that there was a significant difference on overall survival (OS) rate between the two groups. The area under curve (AUC) in different years indicated that the model was of high efficiency in prognosis prediction. RP11-63A11.1 was mainly expressed in renal tissues and it correlated with the tumor stage, T, M, N classifications, OS, PFS, and DSS of pRCC patients. Consistent with the expression in pRCC tissue samples, RP11-63A11.1 was also down-regulated in pRCC cells. More importantly, up-regulation of RP11-63A11.1 attenuated cell survival and induced apoptosis. Conclusions Ten cancer-related lncRNAs were incorporated into a powerful model for prognosis evaluation. RP11-63A11.1 functioned as a cancer suppressor in pRCC and it might be a potential therapeutic target for treating pRCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Jiajin Wu ◽  
Chao Hou ◽  
Yuhao Wang ◽  
Zhongyuan Wang ◽  
Pu Li ◽  
...  

Background. Recent research found that N5-methylcytosine (m5C) was involved in the development and occurrence of numerous cancers. However, the function and mechanism of m5C RNA methylation regulators in clear cell renal cell carcinoma (ccRCC) remains undiscovered. This study is aimed at investigating the predictive and clinical value of these m5C-related genes in ccRCC. Methods. Based on The Cancer Genome Atlas (TCGA) database, the expression patterns of twelve m5C regulators and matched clinicopathological characteristics were downloaded and analyzed. To reveal the relationships between the expression levels of m5C-related genes and the prognosis value in ccRCC, consensus clustering analysis was carried out. By univariate Cox analysis and last absolute shrinkage and selection operator (LASSO) Cox regression algorithm, a m5C-related risk signature was constructed in the training group and further validated in the testing group and the entire cohort. Then, the predictive ability of survival of this m5C-related risk signature was analyzed by Cox regression analysis and nomogram. Functional annotation and single-sample Gene Set Enrichment Analysis (ssGSEA) were applied to further explore the biological function and potential signaling pathways. Furthermore, we performed qRT-PCR experiments and measured global m5C RNA methylation level to validate this signature in vitro and tissue samples. Results. In the TCGA-KIRC cohort, we found significant differences in the expression of m5C RNA methylation-related genes between ccRCC tissues and normal kidney tissues. Consensus cluster analysis was conducted to separate patients into two m5C RNA methylation subtypes. Significantly better outcomes were observed in ccRCC patients in cluster 1 than in cluster 2. m5C RNA methylation-related risk score was calculated to evaluate the prognosis of ccRCC patients by seven screened m5C RNA methylation regulators (NOP2, NSUN2, NSUN3, NSUN4, NSUN5, TET2, and DNMT3B) in the training cohort. The AUC for the 1-, 2-, and 3-year survival in the training cohort were 0.792, 0.675, and 0.709, respectively, indicating that the risk signature had an excellent prognosis prediction in ccRCC. Additionally, univariate and multivariate Cox regression analyses revealed that the risk signature could be an independent prognostic factor in ccRCC. The results of ssGSEA suggested that the immune cells with different infiltration degrees between the high-risk and low-risk groups were T cells including follicular helper T cells, Th1_cells, Th2_cells, and CD8+_T_cells, and the main differences in immune-related functions between the two groups were the interferon response and T cell costimulation. In addition, qRT-PCR experiments confirmed our results in renal cell lines and tissue samples. Conclusions. According to the seven selected regulatory factors of m5C RNA methylation, a risk signature associated with m5C methylation that can independently predict prognosis in patients with ccRCC was developed and further verified the predictive efficiency.


Sign in / Sign up

Export Citation Format

Share Document