scholarly journals TCM Regulates PI3K/Akt Signal Pathway to Intervene Atherosclerotic Cardiovascular Disease

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiali Liu ◽  
Pangao Xu ◽  
Dekun Liu ◽  
Ruiqing Wang ◽  
Shengnan Cui ◽  
...  

Vascular endothelial injury is the initial stage of atherosclerosis (AS). Stimulating and activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway can regulate the expression of vascular endothelial cytokines, thus affecting the occurrence and development of AS. In addition, the PI3K/Akt signaling pathway can regulate the polarization and survival of macrophages and the expression of inflammatory factors and platelet function, thus influencing the progression of AS. In recent years, traditional Chinese medicine (TCM) has been widely recognized for its advantages of fewer side effects, multiple pathways, and multiple targets. Also, the research of TCM regulation of AS via the PI3K/Akt signaling pathway has achieved certain results. This study aimed to analyze the characteristics of the PI3K/Akt signaling pathway and its role in the pathogenesis of AS, as well as the role of Chinese medicine in regulating the PI3K/Akt signaling pathway. The findings are expected to provide a theoretical basis for the clinical treatment and pathological mechanism research of AS.

2003 ◽  
Vol 17 (6) ◽  
pp. 610-620 ◽  
Author(s):  
Jiro Umeda ◽  
Shigetoshi Sano ◽  
Kazuhiko Kogawa ◽  
Noboru Motoyama ◽  
Kunihiko Yoshikawa ◽  
...  

2018 ◽  
Vol 96 (4) ◽  
pp. 475-482 ◽  
Author(s):  
Yujing Huang ◽  
Ying Mao ◽  
Huiying Li ◽  
Guangxun Shen ◽  
Guangxian Nan

Ischemic stroke is a major cerebrovascular disease resulting from a transient or permanent local reduction of cerebral blood flow. Angiogenesis plays an important role in cerebral microvascular repair after ischemic stroke. This study aimed at investigating the effect of NF-E2-related factor 2 (Nrf2) on the angiogenesis of mouse cerebral microvascular endothelial bEnd.3 cells in a hypoxic environment. We found that Nrf2 expression was temporarily increased in hypoxia-induced bEnd.3 cells. Knockdown of Nrf2 inhibited the proliferation, migration, as well as tube formation in hypoxia-induced bEnd.3 cells. Meanwhile, vascular endothelial growth factor and PI3K/Akt signaling pathways were identified to be regulated by Nrf2 in hypoxia-induced bEnd.3 cells. It was found that silencing of Nrf2 downregulated the expression levels of NAD(P)H:quinine oxidoreductase-1, vascular endothelial growth factor, p-Akt, and heme oxygenase-1 in hypoxia-induced bEnd.3 cells. Data suggested that hypoxia induced the transient increase of Nrf2, which plays a key role in the angiogenesis of cerebral microangiogenesis, and that Nrf2 regulates the proliferation, migration, as well as tube formation likely through PI3K/Akt signaling pathway in hypoxia-induced bEnd.3 cells. Our study provides proof of concept for the modulation of Nrf2, so as to tilt the balance toward angiogenesis, representing a therapeutic strategy for hypoxia or ischemia disorders such as stroke.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuefeng Zhang ◽  
Fei Yu ◽  
Jingyou Hao ◽  
Eliphaz Nsabimana ◽  
Yanru Wei ◽  
...  

Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)–Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K–Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K–Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Qiao En ◽  
Huang Zeping ◽  
Wang Yuetang ◽  
Wang Xu ◽  
Wang Wei

Abstract Background Calcific aortic valve disease (CAVD) is the most prevalent valvular disease worldwide. However, no effective treatment could delay or prevent the progression of the disease due to the poor understanding of its pathological mechanism. Many studies showed that metformin exerted beneficial effects on multiple cardiovascular diseases by mediating multiple proteins such as AMPK, NF-κB, and AKT. This study aims to verify whether metformin can inhibit aortic calcification through the PI3K/AKT signaling pathway. Methods We first analyzed four microarray datasets to screen differentially expressed genes (DEGs) and signaling pathways related to CAVD. Then aortic valve samples were used to verify selected genes and pathways through immunohistochemistry (IHC) and western blot (WB) assays. Aortic valve interstitial cells (AVICs) were isolated from non-calcific aortic valves and then cultured with phosphate medium (PM) with or without metformin to verify whether metformin can inhibit the osteogenic differentiation and calcification of AVICs. Finally, we used inhibitors and siRNA targeting AMPK, NF-κB, and AKT to study the mechanism of metformin. Results We screened 227 DEGs; NF-κB and PI3K/AKT signaling pathways were implicated in the pathological mechanism of CAVD. IHC and WB experiments showed decreased AMPK and AKT and increased Bax in calcific aortic valves. PM treatment significantly reduced AMPK and PI3K/AKT signaling pathways, promoted Bax/Bcl2 ratio, and induced AVICs calcification. Metformin treatment ameliorated AVICs calcification and apoptosis by activating the PI3K/AKT signaling pathway. AMPK activation and NF-κB inhibition could inhibit AVICs calcification induced by PM treatment; however, AMPK and AKT inhibition reversed the protective effect of metformin. Conclusions This study, for the first time, demonstrates that metformin can inhibit AVICs in vitro calcification by activating the PI3K/AKT signaling pathway; this suggests that metformin may provide a potential target for the treatment of CAVD. And the PI3K/AKT signaling pathway emerges as an important regulatory axis in the pathological mechanism of CAVD.


Sign in / Sign up

Export Citation Format

Share Document