scholarly journals Vehicular Bidirectional Internal Antenna with Asymmetric Gain Characteristics to Compensate for Backward Link Path Loss due to Interior Obstacles

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dong-Woo Kim ◽  
Soon-Soo Oh ◽  
Wook-Ki Park

Wireless communication technologies are expected to become essential in future self-driving vehicles. This study presents an antenna for vehicle wireless communication with a bandwidth of 75 MHz at a Wireless Access in Vehicular Environment frequency of 5.885 GHz. To compensate for the backward link path loss from the vehicle interior and passengers, the antenna is designed to have asymmetric gains of 0 and 6 dBi at 0° and 180°, respectively. The antenna is validated through an outdoor road test. We measured the received continuous-wave (CW) power, received signal strength indicator, and packet-delivered ratio (PDR) of the digital signal under vehicle-to-vehicle communication mode. Similar power is received in both the backward and forward scenarios. The forward and backward PDR are also similar.


2013 ◽  
Vol 25 (5) ◽  
pp. 483-493 ◽  
Author(s):  
Luoyi HUANG ◽  
Jiao YAO ◽  
Wei WU ◽  
Xiaoguang YANG

With the evolution of advanced wireless communication technologies, tremendous efforts have been invested in vehicular networking, particularly the construction of a vehicle-to-vehicle communication system that supports high speed and mobility. In vehicle-to-vehicle communication environment, vehicles constantly exchange information using wireless technology. This paper aims to propose a vehicle-to-vehicle communication system and validate the feasibility of the system on a suburban road in China. Two vehicles were used equipped with IEEE 802.11p based DSRC (Dedicated Short Range Communications) device to construct a vehicle-to-vehicle communication platform. The system architecture consisting of hardware and software was described in details. Then, communication characteristics such as RSSI (Received Signal Strength Indicator), latency and PLR (packet loss rate) were analyzed. Additionally, GPS-related information (such as ground speed and location) was obtained through field test on a suburban road in Shanghai and Taicang City. The test results demonstrate satisfactory performance of the proposed system.



2014 ◽  
Vol 63 (6) ◽  
pp. 2954-2958 ◽  
Author(s):  
Pengyu Liu ◽  
David W. Matolak ◽  
Bo Ai ◽  
Ruoyu Sun


2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986158 ◽  
Author(s):  
Muhammad Ali ◽  
Asad W Malik ◽  
Anis U Rahman ◽  
Sohail Iqbal ◽  
Mian M Hamayun

With the advancement in communication technologies, Internet of vehicles presents a new set of opportunities to efficiently manage transportation problems using vehicle-to-vehicle communication. However, high mobility in vehicular networks causes frequent changes in network topology, which leads to network instability. This frequently results in emergency messages failing to reach the target vehicles. To overcome this problem, we propose a data dissemination scheme for such messages in vehicular networks, based on clustering and position-based broadcast techniques. The vehicles are dynamically clustered to handle the broadcast storm problem, and a position-based technique is proposed to reduce communication delays, resulting in timely dissemination of emergency messages. The simulation results show that the transmission delay, information coverage, and packet delivery ratios improved up to 14%, 9.7%, and 5.5%, respectively. These results indicate that the proposed scheme is promising as it outperforms existing techniques.



F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1309
Author(s):  
Keshvinder Singh Randhava ◽  
Mardeni Roslee ◽  
Zubaida Yusoff

Background: The exponential increase in pattern of vehicles on the roads demands a need to develop a vehicular infrastructure that may not only ease congestions and provide a better experience but also pivot the levels of safety among users. The development of wireless technology has made it convenient for machines, devices and vehicles to interact with one another. The efficacy of this wireless communications relies on utilising current and available technology to enable information to be shared efficiently. In the wake of the available advancement in wireless technology, a new dynamic spectrum management (DSM) in vehicle-to-vehicle (V2V) communication that coexists with the existing Long-Term Evolution (LTE) network to increase the throughput in V2V communication is proposed. This will provide some solutions to enable a more efficient vehicular infrastructure. Methods: This paper focuses on the utilization of DSM in V2V communications by selecting an appropriate frequency band through the selection of available licensed and unlicensed frequency bands for vehicles. Further investigations are done to identify the effect of interference in the dynamic spectrum by observing the path loss, SINR, and the throughput with various interfering users. Results: The results show that the performance of the proposed DSM augments a significant improvement in the overall throughput and the signal-to-interference-plus-noise ratio (SINR) value is reduced by up to 60% when compared to the fixed spectrum allocation. Conclusions: Although the dynamic spectrum is still affected by the interference from the existing cellular users, the throughput of the dynamic spectrum remains sufficient to transmit the information to other vehicles.





2021 ◽  
Author(s):  
Aishwarya I ◽  
Carolin B ◽  
ChalceEbenS ◽  
P. Kannan

The focus of the paper is Vehicle to Vehicle (V2V) communication system that uses a wireless communication technology using a LED transmitter and therefore the vehicle will transmit the information continuously to the opposite vehicle ahead it using Head light. The data is stored within the Secure Digital Card in comma separated value for future reference just in case of emergency at the equivalent time the data’s are stored in the Cloud Server for Government Reference to locate the accident prone zones. The Light fidelity (Li-Fi) is that the newest technology within the field of wireless communication. As the number of users are increasing, the speed of knowledge transmission within the wireless network gets automatically decreased.



Author(s):  
Michail Yu. Maslov ◽  
Yuri M. Spodobaev

Telecommunications industry evolution shows the highest rates of transition to high-tech systems and is accompanied by a trend of deep mutual penetration of technologies - convergence. The dominant telecommunication technologies have become wireless communication systems. The widespread use of modern wireless technologies has led to the saturation of the environment with technological electromagnetic fields and the actualization of the problems of protecting the population from them. This fundamental restructuring has led to a uniform dense placement of radiating fragments of network technologies in the mudflow areas. The changed parameters of the emitted fields became the reason for the revision of the regulatory and methodological support of electromagnetic safety. A fragmented structural, functional and parametric analysis of the problem of protecting the population from the technological fields of network technologies revealed uncertainty in the interpretation of real situations, vulnerability, weakness and groundlessness of the methodological basis of sanitary-hygienic approaches. It is shown that this applies to all stages of the electromagnetic examination of the emitting fragments of network technologies. Distrust arises on the part of specialists and the population in not only the system of sanitary-hygienic control, but also the safety of modern network technologies is being called into question. Growing social tensions and radio phobia are everywhere accompanying the development of wireless communication technologies. The basis for solving almost all problems of protecting the population can be the transfer of subjective methods and means of monitoring and sanitary-hygienic control of electromagnetic fields into the field of IT.



2020 ◽  
Vol 8 ◽  
pp. 14-21
Author(s):  
Surya Man Koju ◽  
Nikil Thapa

This paper presents economic and reconfigurable RF based wireless communication at 2.4 GHz between two vehicles. It implements digital VLSI using two Spartan 3E FPGAs, where one vehicle receives the information of another vehicle and shares its own information to another vehicle. The information includes vehicle’s speed, location, heading and its operation, such as braking status and turning status. It implements autonomous vehicle technology. In this work, FPGA is used as central signal processing unit which is interfaced with two microcontrollers (ATmega328P). Microcontroller-1 is interfaced with compass module, GPS module, DF Player mini and nRF24L01 module. This microcontroller determines the relative position and the relative heading as seen from one vehicle to another. Microcontroller-2 is used to measure the speed of vehicle digitally. The resulting data from these microcontrollers are transmitted separately and serially through UART interface to FPGA. At FPGA, different signal processing such as speed comparison, turn comparison, distance range measurement and vehicle operation processing, are carried out to generate the voice announcement command, warning signals, event signals, and such outputs are utilized to warn drivers about potential accidents and prevent crashes before event happens.



Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 651
Author(s):  
Wouter Schinkel ◽  
Tom van der Sande ◽  
Henk Nijmeijer

A cooperative state estimation framework for automated vehicle applications is presented and demonstrated via simulations, the estimation framework is used to estimate the state of a lead and following vehicle simultaneously. Recent developments in the field of cooperative driving require novel techniques to ensure accurate and stable vehicle following behavior. Control schemes for the cooperative control of longitudinal and lateral vehicle dynamics generally require vehicle state information about the lead vehicle, which in some cases cannot be accurately measured. Including vehicle-to-vehicle communication in the state estimation process can provide the required input signals for the practical implementation of cooperative control schemes. This study is focused on demonstrating the benefits of using vehicle-to-vehicle communication in the state estimation of a lead and following vehicle via simulations. The state estimator, which uses a cascaded Kalman filtering process, takes the operating frequencies of different sensors into account in the estimation process. Simulation results of three different driving scenarios demonstrate the benefits of using vehicle-to-vehicle communication as well as the attenuation of measurement noise. Furthermore, in contrast to relying on low frequency measurement data for the input signals of cooperative control schemes, the state estimator provides a state estimate at every sample.



Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3783
Author(s):  
Sumbal Malik ◽  
Manzoor Ahmed Khan ◽  
Hesham El-Sayed

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.



Sign in / Sign up

Export Citation Format

Share Document