scholarly journals Accident Prevention Black-Box and Vehicle-to-Vehicle Communication Using Li-Fi and Wi-Fi Technologies

2021 ◽  
Author(s):  
Aishwarya I ◽  
Carolin B ◽  
ChalceEbenS ◽  
P. Kannan

The focus of the paper is Vehicle to Vehicle (V2V) communication system that uses a wireless communication technology using a LED transmitter and therefore the vehicle will transmit the information continuously to the opposite vehicle ahead it using Head light. The data is stored within the Secure Digital Card in comma separated value for future reference just in case of emergency at the equivalent time the data’s are stored in the Cloud Server for Government Reference to locate the accident prone zones. The Light fidelity (Li-Fi) is that the newest technology within the field of wireless communication. As the number of users are increasing, the speed of knowledge transmission within the wireless network gets automatically decreased.

2020 ◽  
Vol 8 (1) ◽  
pp. 140-160
Author(s):  
Inka Trisna Dewi ◽  
Amang Sudarsono ◽  
Prima Kristalina ◽  
Mike Yuliana

One effort to secure vehicle-to-vehicle (V2V) communication is to use a symmetrical cryptographic scheme that requires the distribution of shared secret keys. To reduce attacks on key distribution, physical layer-based key formation schemes that utilize the characteristics of wireless channels have been implemented. However, existing schemes still produce a low bit formation rate (BFR) even though they can reach a low bit error rate (BER). Note that V2V communication requires a scheme with high BFR in order to fulfill its main goal of improving road safety. In this research, we propose a higher rate secret key formation (HRKF) scheme using received signal strength (RSS) as a source of random information. The focus of this research is to produce keys with high BFR without compromising BER. To reduce bit mismatch, we propose a polynomial regression method that can increase channel reciprocity. We also propose a fixed threshold quantization (FTQ) method to maintain the number of bits so that the BFR increases. The test results show that the HRKF scheme can increase BFR from 40% up to 100% compared to existing research schemes. To ensure the key cannot be guessed by the attacker, the HRKF scheme succeeds in producing a key that meets the randomness of the NIST test.


Author(s):  
Linjun Zhang ◽  
Gábor Orosz

Arising technologies in vehicle-to-vehicle (V2V) communication allow vehicles to obtain information about the motion of distant vehicles. Such information can be presented to the driver or incorporated in advanced autonomous cruise control (ACC) systems. In this paper, we investigate the effects of multi-vehicle communication on the dynamics of connected vehicle platoons and propose a motif-based approach that allows systematical analysis and design of such systems. We investigate the dynamics of simple motifs in the presence of communication delays, and show that long-distance communication can stabilize the uniform flow when the flow cannot be stabilized by nearest neighbor interactions. The results can be used for designing driver assist systems and communication-based cruise control systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dong-Woo Kim ◽  
Soon-Soo Oh ◽  
Wook-Ki Park

Wireless communication technologies are expected to become essential in future self-driving vehicles. This study presents an antenna for vehicle wireless communication with a bandwidth of 75 MHz at a Wireless Access in Vehicular Environment frequency of 5.885 GHz. To compensate for the backward link path loss from the vehicle interior and passengers, the antenna is designed to have asymmetric gains of 0 and 6 dBi at 0° and 180°, respectively. The antenna is validated through an outdoor road test. We measured the received continuous-wave (CW) power, received signal strength indicator, and packet-delivered ratio (PDR) of the digital signal under vehicle-to-vehicle communication mode. Similar power is received in both the backward and forward scenarios. The forward and backward PDR are also similar.


Author(s):  
Jinhua Tan ◽  
Xuqian Qin ◽  
Li Gong

Sand-dust environment affects drivers’ perceptions of surrounding traffic conditions, resulting in unsafe operations. From an ergonomics perspective, such adverse effects could be alleviated by environment control as well as the assistance of machines. Vehicle-to-vehicle (V2V) communication appears to be an important component of machines in future traffic systems, which could support the driving task. In order to explore what influences V2V communication would generate on traffic systems, this paper proposes a car-following model accounting for V2V communication in a sand-dust environment. The results indicate that V2V communication helps to reduce the fluctuations of acceleration, headway, and velocity, when a small perturbation is added to the traffic flow in sand-dust environment. If a vehicle in the traffic flow stops suddenly, the number of crumped vehicles decreases with V2V communication taken into account. Furthermore, the residual velocities of the crumped vehicles decrease, which means the severity of collision is suppressed. It is concluded that V2V communication can play an active role in the improvement of traffic safety in a sand-dust environment.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1309
Author(s):  
Keshvinder Singh Randhava ◽  
Mardeni Roslee ◽  
Zubaida Yusoff

Background: The exponential increase in pattern of vehicles on the roads demands a need to develop a vehicular infrastructure that may not only ease congestions and provide a better experience but also pivot the levels of safety among users. The development of wireless technology has made it convenient for machines, devices and vehicles to interact with one another. The efficacy of this wireless communications relies on utilising current and available technology to enable information to be shared efficiently. In the wake of the available advancement in wireless technology, a new dynamic spectrum management (DSM) in vehicle-to-vehicle (V2V) communication that coexists with the existing Long-Term Evolution (LTE) network to increase the throughput in V2V communication is proposed. This will provide some solutions to enable a more efficient vehicular infrastructure. Methods: This paper focuses on the utilization of DSM in V2V communications by selecting an appropriate frequency band through the selection of available licensed and unlicensed frequency bands for vehicles. Further investigations are done to identify the effect of interference in the dynamic spectrum by observing the path loss, SINR, and the throughput with various interfering users. Results: The results show that the performance of the proposed DSM augments a significant improvement in the overall throughput and the signal-to-interference-plus-noise ratio (SINR) value is reduced by up to 60% when compared to the fixed spectrum allocation. Conclusions: Although the dynamic spectrum is still affected by the interference from the existing cellular users, the throughput of the dynamic spectrum remains sufficient to transmit the information to other vehicles.


2016 ◽  
Vol 850 ◽  
pp. 16-22
Author(s):  
Özge Özdemir ◽  
İslam Kılıç ◽  
Ahmet Yazıcı ◽  
Kemal Özkan

An advanced driver assistance system (ADAS) is the premium technology for autonomous driving. It uses data from vision/camera systems, data from in vehicle sensors, and data from vehicle-to-vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communication systems. The next generation systems even autonomous vehicles are expected to use the V2V information to increase the safety for non-line of sight environments. Exchanging some data like vehicle position, speed, status etc., helps to the driver about potential problems, or to avoid collisions. In this paper, a V2V communication system module is designed and tested on the vehicles.


This paper introduces a vehicle-to-vehicle (V2V) communication system based on visible light communication technology. A vehicle will transmit the data continuously to another vehicle in front of it using head light and the data is stored in the Secure Digital (SD) Card in comma separated value for future reference in case of emergency at the same time the data is stored in the cloud server for government reference for locate the most accident areas. Nowadays, people readily use internet in their day-to-day activities to accomplish their task by means of wireless or wired network. As users are increasing manifold, data transmission rate consequently decreasing. However, Wi-Fi imparts data rate of 150Mbps as per IEEE 802.11n, this speed is still not enough to suffice the needs of a user. Considering this, Visible light communication concept has been introduced. In this project, a comparative and analytic study about the speed of visible light and Wi-Fi communication is being done and also reduction of network jamming problem due to increasing users demand is also being done.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7022
Author(s):  
Yongki Lee ◽  
Taewon Ahn ◽  
Chanhwa Lee ◽  
Sangjun Kim ◽  
Kihong Park

In truck platooning, the leading vehicle is driven manually, and the following vehicles run by autonomous driving, with the short inter-vehicle distance between trucks. To successfully perform platooning in various situations, each truck must maintain dynamic stability, and furthermore, the whole system must maintain string stability. Due to the short front-view range, however, the following vehicles’ path planning capabilities become significantly impaired. In addition, in platooning with articulated cargo trucks, the off-tracking phenomenon occurring on a curved road makes it hard for the following vehicle to track the trajectory of the preceding truck. In addition, without knowledge of the global coordinate system, it is difficult to correlate the local coordinate systems that each truck relies on for sensing environment and dynamic signals. In this paper, in order to solve these problems, a path planning algorithm for platooning of articulated cargo trucks has been developed. Using the Kalman filter, V2V (Vehicle-to-Vehicle) communication, and a novel update-and-conversion method, each following vehicle can accurately compute the trajectory of the leading vehicle’s front part for using it as a target path. The path planning algorithm of this paper was validated by simulations on severe driving scenarios and by tests on an actual road. The results demonstrated that the algorithm could provide lateral string stability and robustness for truck platooning.


2020 ◽  
pp. 566-571
Author(s):  
Saif H. Alrubaee ◽  
◽  
Mahamod Ismail ◽  
Mohammed A. Altahrawi ◽  
Bara B. Burhan

Modern wireless communication like 5G systems are expected to serve a wider range of scenarios than current mobile communications systems. One of the major network applications related to 5G is Vehicle-to-Vehicle (V2V) communication that improves vehicle road safety, enhances traffic and travel efficiency, and provides convenience and comfort for passengers and drivers. However, supporting high mobility is a challenge on the air interface. Accordingly, multicarrer modulation as a multiple access is used to enhance the connection between vehicles and to overcome this challenge. In this paper, two multicarrier modulations are simulated. The first one is the Orthogonal Frequency Division Multiplexing (OFDM) while the second one is the Filter Bank Multi-Carrier with Offset Quadrature Amplitude Modulation (FBMC/OQAM) which is called FBMC. Simulation results show that all waveforms have comparable BER performance. The throughput of the FBMC is greater than the OFDM and the spectral efficiency is increased according to the use of the OQAM modulation. The FBMC throughput reaches 5 Mbps while the OFDM reaches 4 Mbps; these results are due to the higher usable bandwidth and because of using filters in FBMC which reduces the effect of Cyclic Prefix (CP) on the signal especially when CP is large in OFDM.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jalel Chebil ◽  
Hanene Zormati ◽  
Jamel Belhadj Taher

Vehicle-to-Vehicle (V2V) communication has received a lot of attention over recent years since it can improve the efficiency and safety of roads for drivers and travellers besides other numerous applications. However dynamic nature of this environment makes it difficult to come up with a suitable wireless communication channel model that can be used in the simulation of any V2V communication system. This paper reviews the recent techniques used for geometry-based stochastic channel modelling for V2V communication. It starts by presenting the various classes of wireless communication channel models available in the literature with more emphasis on the Geometry-Based Stochastic channel Models (GBSM). Then the paper discusses in more detail the state of the art of the regular-shaped and irregular-shaped GBSM for the two- and three-dimensional models. Finally, main challenges are identified and future research directions in this area are recommended.


Sign in / Sign up

Export Citation Format

Share Document