scholarly journals Response Characteristics of Dynamic Torque for Wet Clutch Engagement: A Numerical and Experimental Study

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhigang Zhang ◽  
Ling Zou ◽  
Hang Liu ◽  
Jin Feng ◽  
Zhige Chen

To determine the factors affecting the dynamic transmitted torque response characteristics of the wet clutch, the oil film pressure, the asperity contact pressure, the applied pressure, and the dynamic transmitted torque model were established, using the fourth-order Runge–Kutta numerical method to couple the oil film thickness and the speed difference to obtain the change curve of the joint pressure and the transmitted torque. The established model was used to study the influence of the pressure hysteresis time, lubricant viscosity, friction lining permeability, friction pair equivalent elastic modulus, and surface combined roughness RMS on the dynamic transmitted torque response during the wet clutch engagement. The results indicate that the longer the pressure hysteresis time, the smaller the permeability of the friction lining, the smaller the equivalent elastic modulus, the greater surface combined roughness RMS, the more delayed the response of the transmitted torque, and the smaller the level of jerk of the wet clutch engagement. Also, the lower the lubricant viscosity, the greater the permeability of the friction lining, and the smaller the equivalent elastic modulus is and the greater surface combined roughness RMS is, the more sensitive the transmitted torque response is to pressure response changes.

Author(s):  
Yingying Zhang ◽  
Changle Xiang

The driving performance of the vehicle with automatic transmission is influenced by the performance of the wet clutch directly. But at present it is still a challenge to build a reliable predictable model for the torque of the engagement process of the wet clutch. Focusing on the wet clutch of vehicle, this paper starts from mechanism analysis, and a modified Reynolds equation with the consideration of the centrifugal force of the squeeze-film is established. In the model, we can consider the speeds of the friction and separator plates independently. At the same time, flow factors have been used to research the impacts of rough surface on the flow of the lubrication oil. In the three-dimensional solution domain, the circumferential pressure gradient of lubrication oil is considered. The model is solved with the finite volume method. The simulation of the torque of the asperity contact calculates the real contact area changed with the engagement process, and the microscopic texture direction of rough surface is considered. Subsequently, the squeeze-film flow model is combined with the asperity contact model to create an integrated clutch engagement model. Finally, the influence of applied force, viscosity of lubrication oil, friction material, the depth of grooves and the width of the grooves are investigated. Based on the comparison with the experimental data, the performance of the proposed model is found satisfactory. Because in this model more detail properties of material and geometric features of the friction plate are include, the wet clutch model developed in this research can become a baseline model for the prediction of the engagement behavior of a real wet clutch. The present model may become an efficient alternative to laboratory testing and lead to designs that can not be envisioned by other approaches.


1994 ◽  
Vol 14 (Supplement2) ◽  
pp. 69-72
Author(s):  
J.J. GIL ◽  
H. SUGIYAMA ◽  
T. ARAI ◽  
N. TAKAKURA ◽  
J. TAKAHASHI

Author(s):  
Xinxiao Bian ◽  
Quan Wang

The surface quality of cold rolled strip is related to a greater extent on the rolling oil film thickness, and there are many factors that affect the oil film thickness. Considering the various factors comprehensively, an integrated mathematical model is established, such as roughness of rolls and strips, elastohydrodynamic lubrication, friction heat and plastic deformation heat in the rolling zone, viscosity varying with temperature and pressure, etc. A series of equations are developed, such as the Reynolds equation of partial membrane hydrodynamic lubrication based on average flow theory, equation of oil film thickness on rough elastic surface, the thermal interface equations between strip, oil film and roller surface, surface asperity contact pressure equation, lubricant viscosity and density equations, motion equation of the oil film, etc. This model is solved by finite difference method to get the film pressure, oil film thickness, and temperature distribution in the rolling zone. The average rolling pressure, the roll, and strip temperature calculated by the model are very close to the field test results. Comparing the minimum film thickness calculated by the model with the regression formula of other literature test, the error is less than 10%. The minimum oil film thickness is analyzed. It increases with the decrease of the rolling force and is approximately proportional to the rolling speed and lubricant viscosity.


Author(s):  
M Li ◽  
MM Khonsari ◽  
DMC McCarthy ◽  
Joakim Lundin

The experimentally observed, two-stage wear in the wet clutch friction material is directly related to temperature and engagement load. To gain insight into the durability of the friction lining, an extensive parametric analysis of the factors is performed that takes into account different groove patterns (waffle shape, radial, and spiral), internal structure and material properties. The temperature field is predicted using a thermohydrodynamic analysis with the consideration of the asperity contact stress during the engagement process. The results should be useful to facilitate the industrial design of friction lining by avoiding costly wear test.


2001 ◽  
Vol 124 (2) ◽  
pp. 305-312 ◽  
Author(s):  
H. Gao ◽  
G. C. Barber ◽  
M. Shillor

The engagement of a wet clutch with skewed surface roughness was investigated. A Weibull asperity height distribution rather than a Gaussian one was utilized in the asperity contact pressure model. The combined effects of surface roughness and skewness on the friction coefficient were studied for new, run-in and glazed wet friction materials. The results show that the engagement time predicted by the Weibull distribution is greater than that obtained using the Gaussian distribution. A torque spike at the beginning of engagement occurs using the Weibull distribution by taking the skewness into account. A positively sloped curve of friction coefficient versus velocity can reduce the torque increase near the end of the engagement. The strain value at the end of engagement obtained by including the skewness is lower than that predicted by excluding it. The surface topography and the friction characteristics change with the engagement wear and thermal glazing. The torque response and the phase plane are presented for the run-in and the glazed wet friction materials as a function of surface roughness, skewness, and friction characteristic.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110341
Author(s):  
Zhigang Zhang ◽  
Ling Zou ◽  
Hang Liu ◽  
Yonglong Chen ◽  
Benzhu Zhang

Based on the frictional mechanism of a wet clutch, frictional models of wet clutch engagement were established using the modified Reynolds equation and the elastic contact model between frictional pairs. Then, the heat flux models for the viscous shear and asperity friction were built, and the two-dimensional transient thermal models for the separator plate, friction disk, and ATF heat convection model were deduced based on the heat transfer theory and conservation law of energy. Finally, the Runge–Kutta numerical method was used to solve the frictional and thermal models. The average temperature of the separator plate, friction disk, and ATF were calculated. The effects of operating and material parameters, such as applied pressure, initial angular velocity, friction lining permeability, surface combined roughness RMS, equivalent elastic modulus, and ATF flow, on the thermal characteristics of friction pairs and ATF during engagement, were studied. The simulation results show that the temperature characteristics of the separator plate, friction disk, and ATF depend mainly on the viscous shear and asperity friction heat flux, and that the operating and material parameters of the wet clutch also have significant impacts on the overall variation trend of the thermal characteristics of the separator plate, friction disk, and ATF.


2019 ◽  
Vol 71 (1) ◽  
pp. 94-101 ◽  
Author(s):  
Yanzhong Wang ◽  
Yuan Li ◽  
Yang Liu ◽  
Wei Zhang

PurposeTo gain in-depth understandings of engaging characteristics, the purpose of this paper is to improve the model of wet clutches to predict the transmitted torque during the engagement process.Design/methodology/approachThe model of wet clutch during the engagement process took main factors into account, such as the centrifugal effect of lubricant, permeability of friction material, slippage factor of lubricant on contact surface and roughness of contact surface. Reynolds’ equation was derived to describe the hydrodynamic lubrication characteristics of lubricant film between the friction plate and the separated plate, and an elastic-plastic model of the rough surfaces contact based on the finite element analysis was used to indicate the loading force and friction torque of the contact surface.FindingsThe dynamic characteristics of wet clutch engagement time, relative speed, hydrodynamic lubrication of lubricating oil, rough surface contact load capacity and transfer torque can be obtained by the wet clutch engagement model. And the influence of the groove shape and depth on the engaging characteristics is also analyzed.Originality/valueThe mathematical model of the wet clutch during the engagement process can be used to predict the engaging characteristics of the wet clutch which could be useful to the design of the wet clutch.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guo Xiang ◽  
Yijia Wang ◽  
Cheng Wang ◽  
Zhongliang Lv

Purpose In this study, the dynamic characteristics of the water-lubricated rubber bearing considering asperity contact are numerically studied, including water-film stiffness and damping coefficients and plastic-elastic contact stiffness coefficient. Design/methodology/approach The Kogut-Etsion elastic-plastic contact model is applied to calculate the contact stiffness coefficient at the bearing-bush interface and the perturbed method is used to calculate the stiffness and damping coefficients of water-film. In addition, the rubber deformation is determined by the finite element method (FEM) during the simulation. Parametric studies are conducted to assess the effects of the radial clearance, rubber thickness and elastic modulus on the dynamic characteristic of water-lubricated rubber bearing. Findings Numerical results indicate that stiffness and damping coefficients of water film and the contact stiffness of asperity are increased with the decreasing of the radial clearance and the dynamic coefficients are less sensitive to the rubber thickness compared with the elastic modulus of rubber. Furthermore, due to the existed groove, a sudden change of the water film direct stiffness and damping coefficients is observed when the eccentricity ratio ranges from 0.6 to 1.0. Originality/value It is expected this study can provide more information to establish a dynamic equation of water-lubricated rubber bearings exposed to mixed lubrication conditions.


2019 ◽  
Vol 72 (4) ◽  
pp. 541-548 ◽  
Author(s):  
Liang Yu ◽  
Biao Ma ◽  
Man Chen ◽  
He Yan Li ◽  
Jikai Liu

Purpose This paper aims to study and compare the friction stability of wet paper-based clutches with regard to the radial grooves (RG) and waffle grooves (WG). Design/methodology/approach This paper presents an experimental study of a wet clutch concerning the effect of groove patterns on the friction torque and surface temperature. The friction stabilities of RG and WG are investigated with the applied pressure, rotating speed and automatic transmission fluid (ATF) temperature taken into consideration. Findings The friction torque and surface temperature of WG are larger than those of RG under the same operating condition. The friction torque difference between RG and WG grows with the increase of applied pressure and narrows with the increase of ATF temperature. Additionally, their temperature difference expands via increasing the rotating speed and ATF temperature or reducing the applied pressure; in this way, not only the variable coefficient difference between RG and WG can be narrowed, but also the friction stability of the clutch can be improved dramatically. Originality/value This paper explains the thermodynamic differences between RG and WG; moreover, it is verified experimentally that WG has a better friction stability than RG.


Sign in / Sign up

Export Citation Format

Share Document