scholarly journals Controlling Vibration Speed in Tunnel Excavation Using Fine Blasting Method under Complex Environmental Conditions

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yingcai Zhang ◽  
Jiyun Zhang ◽  
Shuren Wang ◽  
Yubo Chen

It is very important to reduce the impact of blasting vibration on the surrounding structures during the tunnel drilling-blasting excavation. Taking the diversion tunnel of the urban water supply project in Zhumadian, Henan Province, China, as an example, the segmentation linear function between the drilling rig and borehole depth was established by fining blasting design. The test of the blasting number and particle vibration velocity was designed. The propagation and attenuation characteristics of blast vibration velocity in the surrounding rocks of the tunnel were analyzed by using theoretical calculation and field monitoring methods. Results show that the fine blasting design can realize the superposition of negative phase of shock waveform to reduce the vibration speed. With the increase of the blasting number, the attenuation of the particle vibration velocity shows a negative exponential function, and the dimensionless vibration velocity loss increases in a power function. The greater the loss, the greater the energy loss during the shock wave propagation process, which is more conducive to ensuring the stability of the protected buildings. The research results can provide the reference for similar engineering practices.

2018 ◽  
Vol 10 (12) ◽  
pp. 4622 ◽  
Author(s):  
Xin Tong ◽  
Yaowu Wang ◽  
Edwin H. W. Chan ◽  
Qingfeng Zhou

Transit-oriented development (TOD) has been recognised as a sustainable planning approach and that is typically designed for a whole city. Individual land use characteristics and the causations have often been ignored. Therefore, the primary objective of this study was to explore the factors that influence the land use catchment area (LCA) characteristics at a station neighborhood level. First, it contributes a methodology to measure the LCA by introducing a new concept. The density gradient was introduced to generate the scale and compactness degree of each station. Second, it provides a theoretical framework for understanding the causes of different LCAs. The partial least squares (PLS) regression model was employed to explore the accessibility effects. By analysing density gradient curves, it reveals that stations grew to fit the negative exponential function. Regarding the scale and form degree of LCAs, the impact of accessibility before and after a station construction have been corroborated. Moreover, the effects of facilities function before construction, distance from main roads, and elevated stations have been emphasized. The results provide support for a more sophisticated concept of catchment area relating to land use at the level of an individual TOD station, while shedding light on the benefits of those engaged in the future design of TOD with due consideration of the local physical environments.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012028
Author(s):  
D J W Mboussa ◽  
S Sun

Abstract Tunneling construction in the mountain area is a challenge for engineers and geotechnicians because of instability due to the presence of discontinuities. The objective of this paper is the modeling of surrounding rock masses for the stability of the diversion tunnel to predict the behavior of rock masses during the excavation process for the Nam Phoun hydropower station project in Laos. Field investigation and laboratories test was realized; Empirical methods as Rock mass designation and Geological Strength Index were performed, rock masses were classified in three categories (RM-1, RM-2, and RM-3); in situ stresses were obtained from existing equations, numerical modeling was performed by the 2D plane strain finite element code Phase2 developed by Rocscience, using Generalized Hoek-Brown criterion for each type of rock masses. The results of numerical modeling show the strength zones of stresses and deformations around the tunnel and predict the instabilities around the tunnel during excavations processes. Thus, for all rock’s masses, it will be necessary to consider an analysis for the supports design before the excavation’s process. The findings of this study allow a clearer understanding of the importance to assess a predictive analysis of slope stability during the feasibility phase of a project by engineers to have an idea of instabilities and its significant in preventing the impact on the cost of the project.


2014 ◽  
Vol 501-504 ◽  
pp. 200-206
Author(s):  
Qing Nan Wei ◽  
Shu Ran Lv

In this paper, based on the establishment of the finite element calculating model, the influence of the blasting vibration to tailings dams stability was analyzed in accordance with actual stope blasting vibration monitoring data. The laws of the blasting vibrations impact on tailings dam stability was reached by importing different vibration amplitude of vibration wave intensity. When the blasting vibration acceleration remained under 0.333g and vibration velocity remained under 17.005cm/s, the coefficient of the healthy tailings dam stability against sliding has a increasing trend with the increase of vibration strength. When the vibration acceleration and the vibration velocity reached the maximum value, the coefficient rapidly decline; But the influence of stope blasting vibration on the stability of the risky tailings dams is more significant. The coefficient of stability against sliding had a straight-line decrease to the risky tailings dams. In Engineering, more than 4 times margin is considered to find the control vibration velocity. The value is 4.25 cm/s. An analysis shows that the effect of blasting vibration on healthy tailings dam stability has two sides. When the blasting vibration intensity remains within control vibration velocity, it can be beneficial to the stability of tailings dam. Otherwise it will be harmful.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Ming Chen ◽  
Jun Zhang ◽  
Wenbo Lu ◽  
Peng Yan ◽  
Ke Deng

Influence of blasting vibration on young concrete structure is an important issue in the field of hydropower engineering, transportation, and so forth. Based on influence of blasting excavation on concrete pouring progress of box girder in nearby Yesanhe Super Large Bridge, which is located in Hubei Province of China, a method combining field test and numerical simulation is used to study influence of blasting vibration on young concrete super large bridge. The results show that blasting excavation of nearby Yesanhe Hydropower Station induced vibration response on Yesanhe Bridge and peak particle velocity (PPV) on the bridge was quite small under test conditions. Monitoring data and numerical simulation both indicate that PPV of box girder is 1 to 4 times larger than that of pier foundation; with the extension of bridge cantilever casting section, velocity amplification factors of different parts of the box girder have different changes and duration of vibration in vertical direction increases. Three days after concrete pouring, the impact of concrete ageing on PPV and damage distribution of the bridge is not obvious. When vibration velocity of pier foundation is within 2 cm/s, the maximum tensile and compressive stress of box girder concrete are less than the tensile and compressive strength of concrete, so that blasting vibration unlikely gives impact on the safety of bridge.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yekai Chen ◽  
Junhao Xu ◽  
Xiaohui Huo ◽  
Jinchang Wang

Blasting excavation of a bedding rock slope is a common problem in highway construction in mountainous areas. Accurate simulation of damage area caused by blasting excavation is of great significance for the subsequent maintenance of slopes. Based on a highway construction project in Guangdong province of China, a tensile and compressive damage model was used to simulate the whole process of blasting excavation of a typical bedding rock slope. The analysis results show that damage first appears just around the blasting hole and then develops to the both sides and the bottom of the blasting hole, and finally a large range of damage appears in the lower part of the blasting hole, and the damage depth on the right-side slope is around 2 m, which is in consistent with the scene. Besides, damage also occurs in the middle of the bedding rock mass of the slope. At the same time, the history analysis of vibration velocity also indicates that tensile failure appears on the right-side slope under the blasting hole. Therefore, the stability of the slope can be assessed by analyzing the distribution of damage factors and the vibration velocity characteristics synthetically. In addition, parameter analysis was also carried out to optimize the blasting design by controlling the blasting load so as to obtain the ideal blasting excavation effect and ensure the stability of the slope under blasting load.


1997 ◽  
Vol 77 (03) ◽  
pp. 504-509 ◽  
Author(s):  
Sarah L Booth ◽  
Jacqueline M Charnley ◽  
James A Sadowski ◽  
Edward Saltzman ◽  
Edwin G Bovill ◽  
...  

SummaryCase reports cited in Medline or Biological Abstracts (1966-1996) were reviewed to evaluate the impact of vitamin K1 dietary intake on the stability of anticoagulant control in patients using coumarin derivatives. Reported nutrient-drug interactions cannot always be explained by the vitamin K1 content of the food items. However, metabolic data indicate that a consistent dietary intake of vitamin K is important to attain a daily equilibrium in vitamin K status. We report a diet that provides a stable intake of vitamin K1, equivalent to the current U.S. Recommended Dietary Allowance, using food composition data derived from high-performance liquid chromatography. Inconsistencies in the published literature indicate that prospective clinical studies should be undertaken to clarify the putative dietary vitamin K1-coumarin interaction. The dietary guidelines reported here may be used in such studies.


Author(s):  
Olena Pikaliuk ◽  
◽  
Dmitry Kovalenko ◽  

One of the main criteria for economic development is the size of the public debt and its dynamics. The article considers the impact of public debt on the financial security of Ukraine. The views of scientists on the essence of public debt and financial security of the state are substantiated. An analysis of the dynamics and structure of public debt of Ukraine for 2014-2019. It is proved that one of the main criteria for economic development is the size of public debt and its dynamics. State budget deficit, attracting and using loans to cover it have led to the formation and significant growth of public debt in Ukraine. The volume of public debt indicates an increase in the debt security of the state, which is a component of financial security. Therefore, the issue of the impact of public debt on the financial security of Ukraine is becoming increasingly relevant. The constant growth and large amounts of debt make it necessary to study it, which will have a positive impact on economic processes that will ensure the stability of the financial system and enhance its security.


2018 ◽  
Vol 35 (4) ◽  
pp. 133-136
Author(s):  
R. N. Ibragimov

The article examines the impact of internal and external risks on the stability of the financial system of the Altai Territory. Classification of internal and external risks of decline, affecting the sustainable development of the financial system, is presented. A risk management strategy is proposed that will allow monitoring of risks, thereby these measures will help reduce the loss of financial stability and ensure the long-term development of the economy of the region.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Sign in / Sign up

Export Citation Format

Share Document