scholarly journals Study on the Catastrophic Evolution of Tianshan Road Slope under the Freeze-Thaw Cycles

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Luqi Wang ◽  
Yibing Zhang ◽  
Jian Guo ◽  
Qiang Ou ◽  
Songlin Liu ◽  
...  

The maximum temperature difference of Tianshan Road can reach 77.4°C in a year. Under such complex mechanical environment, the mechanical properties of rock mass and structural planes will change significantly as the increase of freeze-thaw cycles (FTC). Consequently, the FTC has become a key factor in the instability and failure of rocky slopes along the Tianshan Road. In this paper, the progressive deformation of rocky slopes and sudden failure process after critical instability were studied through the FTC tests of rock mass and structural planes, discrete element method, and theoretical analysis. The results show that the structural planes and internal microcracks of the rock mass expand under the action of the FTC, causing a gradual decrease in the stability of the slope. The dynamic collapse of the rocky slope has a certain degree of randomness caused by the spatial distribution of structural planes and the interaction between the rock fragments. Due to the limitation of the slipping space and the tilt angle of the trailing edge of the slope, long-distance migration did not occur, and the in situ accumulation of the slope was obvious after failure. The analysis method in this paper can provide an important reference for guiding the catastrophe mechanism analysis and protection of engineering slopes in cold regions.

2011 ◽  
Vol 255-260 ◽  
pp. 1270-1274 ◽  
Author(s):  
Ping Zhang ◽  
Bin Tian

The cracking control standard of water delivery structure is quite strict especially for middle-route of south-to-north water transfer project with long distance water transfer, large discharge, the crack prevention standard is extraordinary strict and must be reached. Early crack during construction period will affect safe operation of aqueduct, and diurnal variation of air temperature has significant effect on temperature field of thin-walled structure. Construction process simulation and temperature filed calculation during construction period about Caohe river landing rectangle aqueduct of Beijing-Shijiazhuang emergency water supply engineering of middle-route of south-to-north water transfer project are carried out by FEM , and compared with the monitoring temperature. The comparison result shows that temperature field during construction can be accurately simulated by calculation, which is helpful for guiding construction and choosing construction scheme, and worthy to popularize to other similar projects. From the calculation and monitoring, the maximum temperature difference is less than the standard, so there will be no serous cracks during construction in Caohe river aqueduct.


Author(s):  
Ron Harris

Before the seventeenth century, trade across Eurasia was mostly conducted in short segments along the Silk Route and Indian Ocean. Business was organized in family firms, merchant networks, and state-owned enterprises, and dominated by Chinese, Indian, and Arabic traders. However, around 1600 the first two joint-stock corporations, the English and Dutch East India Companies, were established. This book tells the story of overland and maritime trade without Europeans, of European Cape Route trade without corporations, and of how new, large-scale, and impersonal organizations arose in Europe to control long-distance trade for more than three centuries. It shows that by 1700, the scene and methods for global trade had dramatically changed: Dutch and English merchants shepherded goods directly from China and India to northwestern Europe. To understand this transformation, the book compares the organizational forms used in four major regions: China, India, the Middle East, and Western Europe. The English and Dutch were the last to leap into Eurasian trade, and they innovated in order to compete. They raised capital from passive investors through impersonal stock markets and their joint-stock corporations deployed more capital, ships, and agents to deliver goods from their origins to consumers. The book explores the history behind a cornerstone of the modern economy, and how this organizational revolution contributed to the formation of global trade and the creation of the business corporation as a key factor in Europe's economic rise.


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


Author(s):  
O.I. MARKOV

Numerical modelling thermal and thermoelectric processes in a branch of solid–state thermoelectric of Peltier cooler is performed, taking into account heat exchange by convection and radiation. The numerical calculation of the branch was carried out in the mode of the maximum temperature difference.


2016 ◽  
Vol 87 (19) ◽  
pp. 2349-2357 ◽  
Author(s):  
Huanhuan Chen ◽  
XiangLong Li ◽  
Nan Li ◽  
Bin Yang

Non-uniformity of the fiber diameter and difficulty in continuous web collection have limited the development and further application of centrifugal spinning (CS). Here, we present a feasible method for fibers' continuous collection and morphology optimization by utilizing vertical electrostatic-assisted centrifugal spinning (E-CS). The effects of spinning parameters, such as applied voltage, nozzle size, and rotational speed on fiber morphology have been evaluated systematically. We find that vertical voltage is strongly correlated with the formation of bead defects, and nozzle size is the most important parameter on fiber size, and the fiber diameter generally decreased with increasing rotation speed. Through the mechanism analysis and jet trajectory observation, we think that the Rayleigh–Taylor instability is the key factor in determining fiber formation in CS. When a vertical electrostatic force is applied to CS, the above instability phenomenon can be effectively controlled resulting more uniform fibers with thinner diameters and fewer beads.


2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Joshua Titlow ◽  
Francesca Robertson ◽  
Aino Järvelin ◽  
David Ish-Horowicz ◽  
Carlas Smith ◽  
...  

Memory and learning involve activity-driven expression of proteins and cytoskeletal reorganization at new synapses, requiring posttranscriptional regulation of localized mRNA a long distance from corresponding nuclei. A key factor expressed early in synapse formation is Msp300/Nesprin-1, which organizes actin filaments around the new synapse. How Msp300 expression is regulated during synaptic plasticity is poorly understood. Here, we show that activity-dependent accumulation of Msp300 in the postsynaptic compartment of the Drosophila larval neuromuscular junction is regulated by the conserved RNA binding protein Syncrip/hnRNP Q. Syncrip (Syp) binds to msp300 transcripts and is essential for plasticity. Single-molecule imaging shows that msp300 is associated with Syp in vivo and forms ribosome-rich granules that contain the translation factor eIF4E. Elevated neural activity alters the dynamics of Syp and the number of msp300:Syp:eIF4E RNP granules at the synapse, suggesting that these particles facilitate translation. These results introduce Syp as an important early acting activity-dependent regulator of a plasticity gene that is strongly associated with human ataxias.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 373
Author(s):  
Sun Pil Kwon ◽  
Jae Jun Jung ◽  
Byoung Jo Jung

Background/Objectives: To improve a thermal load by increasing internal thermal effect of a building from direct solar radiation through an increase of glass windows.Methods/Statistical analysis: Through the establishment of test beds of the same size, the data of temperature, humidity, solar insolation and PMV of each test bed with or without external louver are acquired to analyze thermal environmental with the simulation.Findings: For the analysis of thermal environment, the amount of energy consumption has been analyzed through the simulation and the data of temperature, humidity, solar insolation and PMV have been acquired for the analysis. With the simulation, about 20% energy saving has been confirmed and the daily averages of temperature and humidity between 8AM to 7PM have been calculated to calculate the maximum temperature difference to be 9.4℃. The solar insolation between 9AM and 7PM was 300W/m2 or below.Improvements/Applications: The improvement of thermal effect with an external louver has been confirmed. It may be applied to the louver system to improve building thermal environment, awning to control direct solar radiation, blind to improve uniformity of illumination intensity toward building during daytime, external blind and ceiling louver system. 


2011 ◽  
Vol 201-203 ◽  
pp. 2909-2912
Author(s):  
Yan Feng Feng ◽  
Tian Hong Yang ◽  
Hua Wei ◽  
Hua Guo Gao ◽  
Jiu Hong Wei

Rock mass is the syntheses composed of kinds of structure and structured surfaces. The joint characters is influencing and controlling the rock mass strength, deformation characteristics and rock mass engineering instability failure in a great degree. Through using the RFPA2D software, which is a kind of material failure process analysis numerical methods based on finite element stress analysis and statistical damage theory, the uniaxial compression tests on numerical model are carried, the impact of the trace length of rock joints and the fault throws on rock mechanics parameters are studied. The results showed that with the gradual increase of trace length,compression strength decreased gradually and its rate of variation getting smaller and smaller, the deformation modulus decreased but the rate of variation larger and larger; with the fault throws increasing, the compression strength first increases and then decreases, when the fault throw is equal to the trace length, the deformation modulus is the largest. When the joint trace length is less than the fault throw, the rate of the deformation modulus is greater than that of trace length, but the deformation modulus was not of regular change.


2021 ◽  
Vol 315 ◽  
pp. 3-9
Author(s):  
Yuan Gao ◽  
Li Hua Zhan ◽  
Hai Long Liao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

The uniformity of temperature field distribution in creep aging process is very important to the forming accuracy of components. In this paper, the temperature field distribution of 2219 aluminum alloy tank cover during aging forming is simulated by using the finite element software FLUENT, and a two-stage heating process is proposed to reduce the temperature field distribution heterogeneity. The results show that the temperature difference of the tank cover is large in the single-stage heating process, and the maximum temperature difference is above 27°C,which seriously affects the forming accuracy of the tank cover. With two-stage heating process, the temperature difference in the first stage has almost no direct impact on the forming accuracy of the top cover. In the second stage, the temperature difference of the tank cover is controlled within 10°C, compared with the single-stage heating, the maximum temperature difference is reduced by more than 17°C. The two-stage heating effectively reduces the heterogeneity of the temperature field of the top cover. The research provides technical support for the precise thermal mechanical coupling of large-scale creep aging forming components.


Sign in / Sign up

Export Citation Format

Share Document