scholarly journals Effects of Qinghuang Powder on Acute Myeloid Leukemia Based on Network Pharmacology, Molecular Docking, and In Vitro Experiments

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ying-jian Zeng ◽  
Min Wu ◽  
Huan Zhang ◽  
Xin-ping Wu ◽  
Lu Zhou ◽  
...  

Qinghuang powder (QHP) is a traditional Chinese herbal medicine. This is a unique formula that is frequently used to treat malignant hematological diseases such as acute myeloid leukemia (AML) in modern clinical practice. An approach of network pharmacology and experimental validation were applied to investigate the pharmacological mechanisms of QHP in AML treatment. First, public databases for target genes known to be associated with AML are searched and compared to the target genes of the active compounds in QHP. Second, AML-associated genes and QHP target genes are compared to identify overlapping enriched genes, and these were used to predict selected target genes that may be implicated in the effects of QHP on AML. Additionally, we conducted functional enrichment analyses, such as gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The significantly enriched pathway associated with potential target proteins was the PI3K-Akt signaling pathway, suggesting that these potential target proteins and pathways may mediate the beneficial biological effects of QHP on AML. All these following genes were found to occur in the compounds-target-pathway networks: AKT1, MAPK1, MAPK3, PIK3CG, CASP3, CASP9, TNF, TGFB1, MAPK8, and TP53. Then, based on the molecular docking studies, it was suggested that the active compound isovitexin can fit into the binding pockets of the top candidate QHP-AML target proteins (PIK3CG). Subsequently, based on the prediction by network pharmacology analysis, both in vitro AML cells and western blot experiments were performed to validate the curative role of QHP. QHP exerted its antitumor activity on AML in vitro, as it inhibits cells proliferation, reduced the expression of Bcl-2 protein, and downregulated the PI3K-Akt signaling pathway. In conclusion, these results revealed that QHP could treat AML via a “multicomponent, multitarget, multipathway” regulatory network. Furthermore, our study also demonstrated that the combination of network pharmacology with the experimental study is effective in discovering and identifying QHP in the treatment of AML and its underlying pharmacological mechanisms.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7030-7030 ◽  
Author(s):  
Olatoyosi Odenike ◽  
Johannes E. Wolff ◽  
Gautam Borthakur ◽  
Ibrahim Taha Aldoss ◽  
David Rizzieri ◽  
...  

7030 Background: Bromodomain and extra-terminal (BET) proteins bind to acetyllysines and upregulate oncogenic target genes. Mivebresib (ABBV-075) is a pan-BET inhibitor with antitumor activity in vitro and xenograft models of AML. This 2-part phase 1 study evaluates the safety and pharmacokinetics of mivebresib at monotherapy or combination dosing schedules in patients with solid tumors (part 1) and acute myeloid leukemia (AML; part 2) (NCT02391480). Here, we report preliminary data from part 2 in patients with relapsed/refractory (RR) AML. Methods: Mivebresib monotherapy (MIV-mono), or combined with venetoclax (MIV-VEN), were administered daily to adult patients with AML. The dose-limiting toxicity (DLT) period was 28 d. Results: As of Dec 2018, 41 patients (median age: 69 y [range, 29–84]; 19 patients had > 2 prior therapies) were enrolled: 19 in MIV-mono (5 of whom switched to MIV-combo) and 22 who began treatment in MIV-VEN cohorts. 23 patients had high cytogenetic risk. Median time on treatment was 28 d (range, 8–562). There were no DLTs. All patients experienced a treatment-emergent adverse event (AE), most commonly (≥40% patient incidence), fatigue (56%), dysgeusia (46%), decreased appetite (44%), diarrhoea (42%), nausea (42%), vomiting (42%). 40 patients had grade ≥3 AEs (febrile neutropenia (37%), anemia (34%) and thrombocytopenia (32%). 33 patients had serious AEs, most commonly febrile neutropenia (19%). 25 deaths were reported; 15 patients died of causes unrelated to mivebresib and 10 patients due to AML progression. The median best % bone marrow blast change for 26 evaluable patients was -20% (range, -98% to +300%). Gene expression analysis in pre- and post-treatment peripheral blood samples showed that HEXIM1, DCXR and CD93 genes were reliable PD biomarkers of ABBV-075 which were consistently modulated in a dose-dependent manner. At the cutoff date, median overall survival for all patients was 2.6 m. Conclusions: Mivebresib was well tolerated and showed antileukemic effects in patients with RR AML. Clinical trial information: NCT02391480.


Blood ◽  
2012 ◽  
Vol 120 (5) ◽  
pp. 1107-1117 ◽  
Author(s):  
Satomi Tanaka ◽  
Satoru Miyagi ◽  
Goro Sashida ◽  
Tetsuhiro Chiba ◽  
Jin Yuan ◽  
...  

Abstract EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2flox/flox mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia–like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.


Aging ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 3376-3391 ◽  
Author(s):  
Jing-dong Zhou ◽  
Xi-xi Li ◽  
Ting-juan Zhang ◽  
Zi-jun Xu ◽  
Zhi-hui Zhang ◽  
...  

Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Yonghui Li ◽  
Li Gao ◽  
Xufeng Luo ◽  
Lili Wang ◽  
Xiaoning Gao ◽  
...  

Abstract t(8;21) is one of the most frequent chromosomal translocations occurring in acute myeloid leukemia (AML) and is considered the leukemia-initiating event. The biologic and clinical significance of microRNA dysregulation associated with AML1/ETO expressed in t(8;21) AML is unknown. Here, we show that AML1/ETO triggers the heterochromatic silencing of microRNA-193a (miR-193a) by binding at AML1-binding sites and recruiting chromatin-remodeling enzymes. Suppression of miR-193a expands the oncogenic activity of the fusion protein AML-ETO, because miR-193a represses the expression of multiple target genes, such as AML1/ETO, DNMT3a, HDAC3, KIT, CCND1, and MDM2 directly, and increases PTEN indirectly. Enhanced miR-193a levels induce G1 arrest, apoptosis, and restore leukemic cell differentiation. Our study identifies miR-193a and PTEN as targets for AML1/ETO and provides evidence that links the epigenetic silencing of tumor suppressor genes miR-193a and PTEN to differentiation block of myeloid precursors. Our results indicated a feedback circuitry involving miR-193a and AML1/ETO/DNMTs/HDACs, cooperating with the PTEN/PI3K signaling pathway and contributing to leukemogenesis in vitro and in vivo, which can be successfully targeted by pharmacologic disruption of the AML1/ETO/DNMTs/HDACs complex or enhancement of miR-193a in t(8;21)–leukemias.


2021 ◽  
Vol 22 (10) ◽  
pp. 5153
Author(s):  
Emeline Bollaert ◽  
Melissa Claus ◽  
Virginie Vandewalle ◽  
Sandrine Lenglez ◽  
Ahmed Essaghir ◽  
...  

Anthracyclines remain a cornerstone of induction chemotherapy for acute myeloid leukemia (AML). Refractory or relapsed disease due to chemotherapy resistance is a major obstacle in AML management. MicroRNAs (miRNAs) have been observed to be involved in chemoresistance. We previously observed that miR-15a-5p was overexpressed in a subgroup of chemoresistant cytogenetically normal AML patients compared with chemosensitive patients treated with daunorubicin and cytarabine. MiR-15a-5p overexpression in AML cells reduced apoptosis induced by both drugs in vitro. This study aimed to elucidate the mechanisms by which miR-15a-5p contributes to daunorubicin resistance. We showed that daunorubicin induced autophagy in myeloid cell lines. The inhibition of autophagy reduced cell sensitivity to daunorubicin. The overexpression of miR-15a-5p decreased daunorubicin-induced autophagy. Conversely, the downregulation of miR-15a-5p increased daunorubicin-induced autophagy. We found that miR-15a-5p targeted four genes involved in autophagy, namely ATG9a, ATG14, GABARAPL1 and SMPD1. Daunorubicin increased the expression of these four genes, and miR-15a-5p counteracted this regulation. Inhibition experiments with the four target genes showed the functional effect of miR-15a-5p on autophagy. In summary, our results indicated that miR-15a-5p induces chemoresistance in AML cells through the abrogation of daunorubicin-induced autophagy, suggesting that miR-15a-5p could be a promising therapeutic target for chemoresistant AML patients.


Author(s):  
Hao Zhou ◽  
Wei Liu ◽  
Yongming Zhou ◽  
Zhenya Hong ◽  
Jian Ni ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Its therapy has not significantly improved during the past four decades despite intense research efforts. New molecularly targeted therapies are in great need. The proto-oncogene c-Myc (MYC) is an attractive target due to its transactivation role in multiple signaling cascades. Deregulation of the MYC is considered one of a series of oncogenic events required for tumorigenesis. However, limited knowledge is available on which mechanism underlie MYC dysregulation and how long non-coding RNAs (lncRNAs) are involved in MYC dysregulation in AML. Methods AML microarray chips and public datasets were screened to identify novel lncRNA GAS6-AS1 was dysregulated in AML. Gain or loss of functional leukemia cell models were produced, and in vitro and in vivo experiments were applied to demonstrate its leukemogenic phenotypes. Interactive network analyses were performed to define intrinsic mechanism. Results We identified GAS6-AS1 was overexpressed in AML, and its aberrant function lead to more aggressive leukemia phenotypes and poorer survival outcomes. We revealed that GAS6-AS1 directly binds Y-box binding protein 1 (YBX1) to facilitate its interaction with MYC, leading to MYC transactivation and upregulation of IL1R1, RAB27B and other MYC target genes associated with leukemia progression. Further, lentiviral-based GAS6-AS1 silencing inhibited leukemia progression in vivo. Conclusions Our findings revealed a previously unappreciated role of GAS6-AS1 as an oncogenic lncRNA in AML progression and prognostic prediction. Importantly, we demonstrated that therapeutic targeting of the GAS6-AS1/YBX1/MYC axis inhibits AML cellular propagation and disease progression. Our insight in lncRNA associated MYC-driven leukemogenesis may contribute to develop new anti-leukemia treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document