scholarly journals Conversion Timing of Following-Up Thermal Recovery Approaches of Post-CHOP for Foamy Extraheavy Oil Reservoirs

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhaopeng Yang ◽  
Xingmin Li ◽  
Yang Yu ◽  
Jia Xie ◽  
Yintao Dong

The purpose of this study is to determine the optimal conversion timing of follow-up thermal recovery approaches of post-CHOP for foamy extraheavy oil reservoirs. The microscopic visualization experiment and the one-dimensional sand pack experiment are conducted to investigate the influence of temperature on the foamy oil cold production process. According to the experimental results, it can be concluded that the temperature has great influence on foamy oil flow stage during the CHOP process. Therefore, it is necessary to study the optimal conversion timing of follow-up thermal recovery approaches after CHOP for the foamy extraheavy oil reservoir. Based on the analysis of the experimental results, the compositional foamy oil model is established by taking the effect of temperature into consideration. In the numerical model, the conversion timings of different thermal recovery approaches are investigated. The optimal conversion timings for cyclic steam stimulation (CSS) and steam flooding (SF) processes are the moments when the pressure drops to the pseudo-bubble point pressure. For the CSS method, excessive pressure cannot give full play to the production potential of CHOP stage; when the pressure is too low, it lacks enough energy to drive the heated crude oil to the wellbore. For the SF method, high pressure cannot fully release the latent heat of steam, and the content of dissolved gas (which will hinder the heat transfer) in oil phase is higher under high pressure, while the very low pressure leads to relatively high viscosity of crude oil; thus, the performance of the SF process becomes worse. For the SAGD process, the adverse effects of released solution gas in foamy extraheavy oil reservoir outweigh the positive effects. As a result, the CHOP period should be extended as long as possible to obtain a high recovery. In other words, the recovery process should be switched to the SAGD process at a relatively low formation pressure. The findings of this study could help for better understanding of the CHOP and post-CHOP thermal techniques for foamy extraheavy oil reservoirs, and it can provide guidance for reservoir engineers to make better use of the thermal recovery techniques to further improve the recovery performance of foamy extraheavy oil reservoirs.

2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


1972 ◽  
Vol 12 (02) ◽  
pp. 143-155 ◽  
Author(s):  
E.L. Claridge

Abstract A new correlation bas been developed for estimating oil recovery in unstable miscible five-spot pattern floods. It combines existing methods of predicting areal coverage and linear displacement efficiency and was used to calculate oil recovery for a series of assumed slug sizes in a live-spot CO2 slug-waterflood pilot test. The economic optimum slug size varies with CO2 cost; at anticipated CO2 costs the pilot would generate an attractive profit if performance is as predicted Introduction Selection of good field prospects for application of oil recovery processes other than waterflooding is often difficult. The principal reason is that other proposed displacing agents are far more costly proposed displacing agents are far more costly than water and usually sweep a lesser fraction of the volume of an oil reservoir (while displacing oil more efficiently from this fraction). Such agents must be used in limited amounts as compared with water; and this amount must achieve an appreciable additional oil recovery above waterflooding recovery. For these reasons, there is in general much less economic margin for engineering error in processes other than waterflooding. The general characteristics of the various types of supplemental recovery processes are well known, and adequate choices can be made of processes to be considered in more detail with respect to a given field. Comparative estimates must then be made of process performance and costs in order to narrow the choice. A much more detailed, definitive process-and-economic evaluation is eventually process-and-economic evaluation is eventually required of the chosen process before an executive decision can be made to commit large amounts of money to such projects. It is in the area between first choice and final engineering evaluation that this work applies. A areal cusping and vertical coning into producing wells. These effects can be seated by existing "desk-drawer" correlation which can confirm or deny the engineer's surmise that he has an appropriate match of recovery process and oil reservoir characteristics is of considerable value in determining when to undertake the costly and often manpower-consuming task of a definitive process-and-economic evaluation. process-and-economic evaluation. An examination of the nature of the developed crude oil resources in the U.S. indicates that the majority of the crude oil being produced is above 35 degrees API gravity and exists in reservoirs deeper than 4,000 ft. The combination of hydrostatic pressure on these oil reservoirs, the natural gas usually present in the crude oil in proportion to this pressure, the reservoir temperatures typically found, and the distribution of molecular sizes and types in the crude oil corresponding to the API gravity results in the fact that, in the majority of cases, the in-place crude oil viscosity was originally no more than twice that of water. A large proportion of these oil reservoirs have undergone pressure decline, gas evolution and consequent increase in crude oil viscosity. However, an appreciable proportion are still at such a pressure and proportion are still at such a pressure and temperature that miscibility can be readily attained with miscible drive agents such as propane or carbon dioxide, and the viscosity of the crude oil is such that the mobility of these miscible drive agents is no more than 50 time s that of the crude oil. Under these circumstances, a possible candidate situation for the miscible-drive type of process may exist. process may exist. Supposing that such a situation is under consideration, the next question is: what specific miscible drive process, and how should it be designed to operate? In some cases, the answer is clear: when the reservoir has a high degree of vertical communication (high permeability and continuity of the permeable, oil-bearing pore space in the vertical direction), then a gravity-stabilized miscible flood is the preferred mode of operation; and the particular drive agent or agents can be chosen on the basis of miscibility requirements, availability and cost. SPEJ P. 143


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaopeng Cao ◽  
Zupeng Liu ◽  
Yong Yang ◽  
Shiming Zhang ◽  
Yahui Bu ◽  
...  

Deep low permeability extra heavy oil reservoir has the characteristics of high formation pressure, high crude oil viscosity, and low permeability. Conventional steam injection thermal recovery has poor viscosity reduction performance and low productivity of a single well, which makes it difficult to develop this type of heavy oil reservoir. In this paper, core flooding experiment and microvisualization equipment were used to study the mechanism of improving the recovery of deep extra heavy oil by using water-soluble viscosity reducer; the realization of water-soluble viscosity reducer in numerical simulation was achieved by using nonlinear mixing rule; the reservoir numerical simulation model of water-soluble viscosity reducer displacement in test well group was established to optimize the development technical parameter of water-soluble viscosity reducer. The results show that compared with waterflooding, the oil displacement efficiency of water-soluble viscosity reducer is increased by 12.7%; water-soluble viscosity reducer can effectively reduce the viscosity of extra heavy oil, under the same temperature and permeability, the higher the concentration of viscosity reducer, the better the viscosity reduction effect, and the smaller the pressure gradient required at the same injection rate; the main mechanism of water-soluble viscosity reducer for enhancing oil recovery is to form oil in water emulsion, which can reduce the viscosity and interfacial tension of crude oil and reduce the residual oil saturation; in the pilot well group, the optimized injection concentration of water-soluble viscosity reducer is 3%, and the optimal injection amount of water-soluble viscosity reducer solution is 50 t/d; water-soluble viscosity reducer displacement was implemented in the pilot well group, the average daily oil of well group was increased from 1.8 t/d to 7.34 t/d, and the pilot well group has achieved good development performance.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xingmin Li ◽  
Changchun Chen ◽  
Zhangcong Liu ◽  
Yongbin Wu ◽  
Xiaoxing Shi

Nowadays, extra heavy oil reservoirs in the Orinoco Heavy-Oil-Belt in Venezuela are exploited via cold production process, which present different production performance in well productivity and primary recovery factor. The purpose of this study is to investigate the causes for such differences with the aspect of foamy oil mechanism. Two typical oil samples were adopted from a shallow reservoir in western Junìn region and a middepth reservoir in eastern Carabobo region in the Belt, respectively. A depletion test was conducted using 1D sand-pack with a visualized microscopic flow observation installation for each of the oil samples under simulated reservoir conditions. The production performance, the foamy oil behaviour, and the oil and gas morphology were recorded in real time during the tests. The results indicated that the shallow heavy oil reservoir in the Belt presents a weaker foamy oil phenomenon when compared with the middepth one; its foamy oil behaviour lasts a shorter duration with a smaller scope, with bigger bubble size and less bubble density. The difference in foamy oil behaviour for those two types of heavy oil reservoir is caused by the difference in reservoir pressure, solution GOR, asphaltene content, etc. Cold production presents obvious features of three stages under the action of strong foamy oil displacement mechanism for the middepth heavy oil reservoir, which could achieve a more favourable production performance. In the contrary, no such obvious production characteristics for the shallow heavy oil reservoir are observed due to weaker foamy oil behaviour, and its primary recovery factor is 9.38 percent point lower than which of the middle heavy oil reservoirs.


SPE Journal ◽  
2006 ◽  
Vol 11 (01) ◽  
pp. 48-57 ◽  
Author(s):  
Chaodong Yang ◽  
Yongan Gu

Summary This paper presents a new experimental method and its computational scheme for measuring solvent diffusivity in heavy oil under practical reservoir conditions by DPDSA. In the experiment, a see-through windowed high-pressure cell is filled with a test solvent at desired pressure and temperature. Then, a heavy-oil sample is introduced through a syringe delivery system to form a pendant oil drop inside the pressure cell. The subsequent diffusion of the solvent into the pendant oil drop causes its shape and volume to change until an equilibrium state is reached. The sequential digital images of the dynamic pendant oil drop are acquired and digitized by applying computer-aided digital image-acquisition and -processing techniques. Physically, variations of the shape and volume of the dynamic pendant oil drop are attributed to the interfacial tension reduction and the well-known oil-swelling effect as the solvent gradually dissolves into heavy oil. Theoretically, the interfacial profile of the dynamic pendant oil drop is governed by the Laplace equation of capillarity, and the molecular diffusion process of the solvent into the pendant oil drop is described by the diffusion equation. An objective function is constructed to express the discrepancy between the numerically predicted and experimentally observed interfacial profiles of the dynamic pendant oil drop. The solvent diffusivity in heavy oil and the mass-transfer Biot number are used as adjustable parameters and thus are determined once the minimum objective function is achieved. This novel experimental technique is tested to measure diffusivities of carbon dioxide in a brine sample and a heavy-oil sample, respectively. It should be noted that, with the present technique, a single diffusivity measurement can be completed within an hour and only a small amount of oil sample is required. The interface mass-transfer coefficient at the solvent/heavy-oil interface can also be determined. In particular, this new technique allows the measurement of solvent diffusivity in an oil sample at constant prespecified high pressure and temperature. Therefore, it is especially suitable for studying the mass-transfer process of injected solvent into heavy oil during solvent-based post-cold heavy-oil production (post-CHOP). Introduction Western Canada has tremendous heavy oil and bitumen resources (Farouq Ali 2003, Miller et al. 2002). Approximately 80 to 95% of the original-oil-in-place is still left behind at the economic limit after cold heavy-oil production (Miller et al. 2002). This is a large oil-in-place target for follow-up enhanced oil recovery (EOR) processes. After primary production, most Canadian heavy-oil reservoirs cannot be further exploited economically by thermal recovery processes because reservoir formations are thin and/or there is active bottomwater. In the literature, some studies have been conducted to evaluate the other recovery methods for these heavy-oil reservoirs (Miller et al. 2002, Das 1995, Frauenfeld et al. 1998, Metwally 1998). Among these methods, vapor extraction (VAPEX) and other solvent-based post-CHOP processes are probably the most promising EOR techniques. In practice, the solvent can be carbon dioxide, flue gas, and light hydrocarbon gases, such as methane, ethane, propane, and butane.


2021 ◽  
Vol 9 (10) ◽  
pp. 2054
Author(s):  
Bing Hu ◽  
Jie-Yu Zhao ◽  
Yong Nie ◽  
Xiao-Yu Qin ◽  
Kai-Duan Zhang ◽  
...  

Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.


2011 ◽  
Vol 71-78 ◽  
pp. 2049-2054 ◽  
Author(s):  
Jin Li Zhu ◽  
Liang Liang Jiang ◽  
Li Cheng Liu ◽  
Yu Qiu Lin

Liaohe block J is a super heavy oil reservoir with relatively strong anisotropy and active edge-bottom water condition. After more than two decades of huff and puff production, the block now reaches a low production rate period, and the local part of the block also encounters serious edge-bottom water invasion. Now steam flooding is used as a switching method to invert the production decline tendency. Applied with thermal recovery process and numerical simulation method, reservoir pressure at flooding conversion, pressure control in steam flooding, injection-production parameters and well pattern are used to optimize the key techniques of steam flooding design. The design results are as follows: the reservoir pressure at flooding conversion as well as during steam flooding process should be controlled below 5 Mpa; the unit volume steam injection rate is 1.65t/d.hm2.m and the bottom-hole steam quality of injecter is no less than 53%; the injection-production ratio is 1.1:1 and inversed 9 point pattern with a 83m well space is used. The steam flooding pilot has been carried out for more than 2 years and obtains favorable benefits.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yaguang Qu ◽  
YiPing Ye ◽  
Shichang Ju ◽  
Jiawen Liu ◽  
Meng Lei

Abstract Steam flooding is proven to be an effective method to improve the development effect of heavy oil reservoirs. And steam flooding is the most common oil recovery technology for heavy oil reservoirs in China. However, because of the various reservoir physical properties, bring great challenges to successful steam flooding development. According to the previous research and development practice, we know that reservoir heterogeneity has a great influence on the development effect of water flooding. Due to the heterogeneity of reservoirs, the development of different injection-production well patterns will be affected. However, it is uncertain whether reservoir heterogeneity has an impact on steam flooding development effect. In order to clarify the above scientific issues, we take Xinjiang steam flooding oilfield as the research object to carry out relevant research. According to the reservoir distribution characteristics of Xinjiang Oilfield, three conceptual heterogeneity models representing permeability, thickness, and geometric plane heterogeneity are firstly proposed. Then, mathematic models with different plane heterogeneity of reservoir sand were built. Based on the mathematic model, initial conditions, boundary condition, and geological parameters of conceptual models, different steam flooding patterns were studied by applying numerical calculation. It is found that heterogeneity is an important geological factor affecting the development of steam flooding of heavy oil reservoir. And the results showed that cumulative oil production was different of different flood pattern at the same production condition. It can be concluded that the development effect of steam flooding of heavy reservoirs is strongly influenced by flood pattern. In order to improve development effectiveness of steam flooding of heavy oil reservoirs, flood pattern should be optimized. For each type of plane heterogeneity reservoir, a reasonable flood pattern was proposed. For plane heterogeneity of permeability, thickness, and geometry form, under the conditions of that as the producer was deployed in high permeability, thick, wide sand body and injector was deployed in low permeability, thin, narrow sand body, the recovery of steam flooding in heavy oil reservoir was better. Finally, how the three types of plane heterogeneity influence steam flooding of heavy reservoirs was discussed by adopting a sensitivity analysis method. The results show that the influence of permeability heterogeneity is the largest, thickness heterogeneity is the second, and geometric heterogeneity is the least. This conclusion can help us improve the development of this reservoir. And also, the findings of this study can help for better understanding of properly deployed well pattern and how to effective develop the heavy oil reservoirs of strong plane heterogeneity for other heavy oil reservoirs.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2226
Author(s):  
Long Wang ◽  
Yang Li ◽  
Zhandong Li ◽  
Yikun Liu ◽  
Laiming Song ◽  
...  

It was deemed important to calculate the thermal recovery production model of tight oil reservoirs after fracturing and packing based on the field data of an oilfield in Bohai Sea, China. The thermal recovery production of a tight oil reservoir after fracturing is demonstrated through theoretical calculation and practical field data on the premise of five hypotheses. Fractures change the fluid flow capacity of the reservoir. Combined with the relevant theories of reservoir thermal production, the dual porosity system in the fractured zone and the single porosity system in the unfractured zone were established. The calculation models of heat loss in the fractured and unfractured zones were derived to determine the thermal recovery heating radius of the reservoir after fracturing and packing. Combined with the pseudo-steady state productivity formula of the composite reservoir, a production calculation model of thermal recovery after fracturing and packing in the tight oil reservoir was established. The results showed that the heating radius of the reservoir after fracturing and packing is smaller than that of the unfractured reservoir, and the additional heat absorption of the fracture system generated by fracturing and packing reduces the thermal recovery effect. The thermal recovery productivity of heavy oil reservoirs is mainly affected by the heating radius. With the increase of fracture density, the heating radius decreases and production decreases. The increase of fracture porosity also leads to the decrease of the heating radius and the production. The calculation result of this model is improved after tight oil reservoir fracturing during the production period, which indicates that the model has a better prediction effect of the production of the tight reservoir after fracturing and packing.


2019 ◽  
Vol 4 (6) ◽  
pp. 1589-1594
Author(s):  
Yvonne van Zaalen ◽  
Isabella Reichel

Purpose Among the best strategies to address inadequate speech monitoring skills and other parameters of communication in people with cluttering (PWC) is the relatively new but very promising auditory–visual feedback (AVF) training ( van Zaalen & Reichel, 2015 ). This study examines the effects of AVF training on articulatory accuracy, pause duration, frequency, and type of disfluencies of PWC, as well as on the emotional and cognitive aspects that may be present in clients with this communication disorder ( Reichel, 2010 ; van Zaalen & Reichel, 2015 ). Methods In this study, 12 male adolescents and adults—6 with phonological and 6 with syntactic cluttering—were provided with weekly AVF training for 12 weeks, with a 3-month follow-up. Data was gathered on baseline (T0), Week 6 (T1), Week 12 (T2), and after follow-up (T3). Spontaneous speech was recorded and analyzed by using digital audio-recording and speech analysis software known as Praat ( Boersma & Weenink, 2017 ). Results The results of this study indicated that PWC demonstrated significant improvements in articulatory rate measurements and in pause duration following the AVF training. In addition, the PWC in the study reported positive effects on their ability to retell a story and to speak in more complete sentences. PWC felt better about formulating their ideas and were more satisfied with their interactions with people around them. Conclusions The AVF training was found to be an effective approach for improving monitoring skills of PWC with both quantitative and qualitative benefits in the behavioral, cognitive, emotional, and social domains of communication.


Sign in / Sign up

Export Citation Format

Share Document