scholarly journals Dynamic Brittle Instability Characteristics of 2000 m Deep Sandstone Influenced by Mineral Composition

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
XianJie Hao ◽  
Zeyu Chen ◽  
Yingnan Wei ◽  
Zhuowen Sun ◽  
Qian Zhang ◽  
...  

The study of dynamic brittleness and failure characteristics is of guiding significance for promoting the full exploitation and utilization of deep sandstone reservoirs. At present, there have been more comprehensive studies on the mechanical properties of deep sandstone reservoirs, but the study of mineral composition on the dynamic brittleness and failure characteristics of deep sandstone reservoirs is relatively weak. In this paper, XRD mineral composition analysis, uniaxial compression experiment, and Brazilian splitting are used to study the influence of mineral composition on mechanical properties and failure characteristics of deep sandstone reservoirs. It was concluded that (1) the mineral compositions of deep sandstone reservoirs are mainly three kinds of oxides: SiO2, Al2O3, and CaO. The failure modes of deep sandstone reservoir samples under uniaxial compression are more complicated, with tension failure and shear failure each accounting for half. In the Brazilian split test, the failure modes of sandstone samples are mainly shear failure. (2) The compressive strength decreases obviously with the increase of CaO content. The contents of SiO2, Al2O3, and CaO all have a great influence on the residual strength of deep sandstone reservoirs. The deformation modulus decreases gradually with the increase of Al2O3 content. (3) The brittleness increases slightly when the content of SiO2 increases, while the brittleness decreases slightly when the content of Al2O3 increases. Considering factors such as strength, modulus, brittleness, and failure characteristics, SiO2 content has the greatest influence on the mechanical properties of deep sandstone reservoirs, followed by Al2O3 content, and CaO content has the least influence. The research results have a guiding role in the utilization and development of oil and gas resources in deep sandstone reservoirs and promote oil and gas development from the middle to deeper layers.

2017 ◽  
Vol 31 (9) ◽  
pp. 1181-1203 ◽  
Author(s):  
Xueyao Hu ◽  
Hui Guo ◽  
Weiguo Guo ◽  
Feng Xu ◽  
Longyang Chen ◽  
...  

Theoretical and experimental studies on the compressive mechanical behavior of 4-harness satin weave carbon/epoxy composite laminates under in-plane loading are conducted over the temperature range of 298–473 K and the strain rate range of 0.001–1700/s in this article. The stress–strain curves of 4-harness satin weave composites are obtained at different strain rates and temperatures, and key mechanical properties of the material are determined. The deformation mechanism and failure morphology of the samples are observed and analyzed by scanning electron microscope (SEM) micrographs. The results show that the uniaxial compressive mechanical properties of 4-harness satin weave composites are strongly dependent on the temperature but are weakly sensitive to strain rate. The peak stress and elastic modulus of the material have the trend of decrease with the increasing of temperature, and the decreasing trend can be expressed as the functional relationship of temperature shift factor. In addition, SEM observations show that the quasi-static failure mode of 4-harness satin weave composites is shear failure along the diagonal lines of the specimens, while the dynamic failure modes of the material are multiple delaminations and longitudinal splitting, and with the increasing of temperature, its longitudinal splitting is more serious, but the delamination is relatively reduced. A constitutive model with thermomechanical coupling effects is proposed based on the experimental results and the increment theory of elastic–plastic mechanics. The experimental verification and numerical analysis show that the model is shown to be able to predict the finite deformation behavior of 4-harness satin weave composites over a wide range of temperatures.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huilin Le ◽  
Shaorui Sun ◽  
Chenghua Xu ◽  
Liuyang Li ◽  
Yong Liu

Flaws existing in rock masses are generally unparallel and under three-dimensional stress; however, the mechanical and cracking behaviors of the specimens with two unparallel flaws under triaxial compression have been rarely studied. Therefore, this study conducted comprehensive research on the cracking and coalescence behavior and mechanical properties of specimens with two unparallel flaws under triaxial compression. Triaxial compressive tests were conducted under different confining pressures on rock-like specimens with two preexisting flaws but varying flaw geometries (with respect to the inclination angle of the two unparallel flaws, rock bridge length, and rock bridge inclination angle). Six crack types and eleven coalescence types in the bridge region were observed, and three types of failure modes (tensile failure, shear failure, and tensile-shear failure) were observed in experiments. Test results show that bridge length and bridge inclination angle have an effect on the coalescence pattern, but the influence of bridge inclination angle is larger than that of the bridge length. When the confining pressure is low, coalescence patterns and failure modes of the specimens are greatly affected by flaw geometry, but when confining pressure rose to a certain level, the influence of confining pressure is larger than the effect of flaw geometry. The peak strength of the specimens is affected by flaw geometry and confining pressure. There is a critical value for the bridge length. If the bridge length is larger than the critical value, peak strengths of the samples almost keep constant as the bridge length increases. In addition, as the bridge inclination angle increases, there is an increase in the probability of tensile cracks occurring, and with an increase in the confining pressure, the probability of the occurrence of shear cracks increases.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jianxun Chen ◽  
Qingsong Wang ◽  
Jiaqi Guo ◽  
Yanbin Luo ◽  
Yao Li ◽  
...  

Firstly, I-RPT ultrasonic detector was used to test the wave velocity of karst limestone with different initial microstructure and water content. Then, RMT-150B rock testing machine and DS2-16B acoustic emission system were used to test the acoustic emission (AE) under uniaxial compression. Mechanical properties and AE characteristics were obtained during rock failure. The detailed relationship between stress-strain and AE characteristics was studied in this paper. Research results indicated the following: (1) For samples with many primary fissures and defects, wave velocity in dry state was larger than that in its natural state. From natural state to saturated state, the wave velocity tended to increase. For samples with good integrity, wave velocity increased with increasing of water content. (2) In the dry state, the samples presented tension failure. In saturated state, the samples presented tension-shear failure. For samples with cracks and good integrity, samples showed brittle failure. For samples with many corrosion pores which showed ductile damage under natural and saturated state, the spalling phenomenon was enhanced under saturated state. (3) With increasing of water content, the peak stress and AE peak reduced dramatically. In brittle failure, AE peak could be considered a sign of failure. In ductile failure, AE activity decreased gradually with the decrease of stress. (4) The mechanical properties and AE characteristics corresponding to four main fracture propagation types were also discussed.


2013 ◽  
Vol 357-360 ◽  
pp. 699-704 ◽  
Author(s):  
Guang Yang ◽  
Zuo Zhou Zhao ◽  
Xiao Gang He

To study the biaxial strength and failure characteristics of reinforced concrete in the state of biaxial tension-compression stresses and provide some suggestions for the practical engineering design, 3 one-third scale reinforced concrete (RC) plate specimens are tested. The results indicate that, in biaxial tension-compression stresses, reinforced concrete cracks in the direction normal to the principal tensile stress direction and presents the characteristics of shear failure modes. The test device could simulate the required stress condition. The compression strength of reinforced concrete is obviously lower than the uniaxial strength fc. The reduction factor k is about 0.55~0.75 which varies with different tension-compression force ratio. Concrete material takes part in the tension process of reinforced concrete and shares part of the tension, while the share ratio decreases as concrete cracks gradually.


2011 ◽  
Vol 311-313 ◽  
pp. 2204-2207 ◽  
Author(s):  
Bo Wang Chen ◽  
Ran He ◽  
Jian Guo Tan ◽  
Yang Oyang

By means of axial compressive and eccentric compressive tests of four Four-tube Concrete-filled Steel Tubular Laced Columns, to research the mechanical properties and failure modes of this structural without yield point. Research shows that, the failure modes of this model, as well as axial compressive short columns, have the same trend of oblique shear failure, and presenting overall bending failure under eccentric compression. The linear eccentricity takes a biggish influence on mechanical properties of laced columns.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246815
Author(s):  
Honggang Zhao ◽  
Haitao Sun ◽  
Dongming Zhang ◽  
Chao Liu

Two kinds of common tunnel shapes, i.e. elliptical opening and square opening were selected for biaxial compression tests, and the influences of two kinds of opening shapes on the mechanical properties, failure characteristics and failure modes of sandstone were compared and analyzed. The complex variable theory and mapping functions were used to obtain the analytical stress solution around elliptical and square openings. The results show that the stability of the specimen containing an elliptical opening was better than that of the specimen containing a square opening under the same lateral stress. Compared with the elliptical opening, the local damage was formed earlier in the square opening which might be caused by a higher stress concentration around the square opening. The stress distributions around openings were influenced by the opening shape and lateral stress coefficient. The top and bottom of square opening were more prone to tensile fracture, and the distribution range of tensile was larger than that of elliptical opening. When the opening failed, the intensity of square opening failure was weaker than that of elliptical opening. On the basis of the average frequency value and the rise angle value, the failure mode of specimen containing elliptical or square opening was distinguished. It was found that the mixed tension and shear failure dominated the failure of specimens with different opening shapes, and the number of shear cracks in the specimen containing a square opening was greater than that in the specimen containing an elliptical opening. The above method of judging failure mode by acoustic emission signals was well verified by the CT images of damaged specimens.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hui Li ◽  
Kaoping Song ◽  
Mingguang Tang ◽  
Ming Qin ◽  
Zhenping Liu ◽  
...  

The key rock mechanical parameters are strength, elastic modulus, Poisson’s ratio, etc., which are important in reservoir development. The accurate determination of reservoir’s mechanical properties is critical to reduce drilling risk and maximize well productivity. Precisely estimating rock mechanical properties is important in drilling and well completion design, as well as crucial for hydraulic fracturing. Rocks are heterogeneous and anisotropic materials. The mechanical properties vary not only with rock types but also with measurement methods, sample geometric dimensions (sample length to diameter ratio and size), and other factors. To investigate sample scale effects on rock mechanical behaviors, unconfined compression tests were conducted on 41 different geometric dimensions of Berea sandstones; unconfined compressive strength (UCS), Young’s modulus ( E ), Poisson’s ratio ( υ ), bulk modulus ( K ), and shear modulus ( G ) were obtained and compared. The results indicate that sample geometry can significantly affect rock mechanical properties: (1) UCS decreases with the increase of length to diameter ratio (LDR), and the UCS standardize factor is between 0.71 and 1.17, which means -30% to +20% variation of UCS with LDR changing from 1 to 6.7. The test results show UCS exhibits positive relationship with sample size. (2) Young’s modulus slightly increases with LDR increases, while Poisson’s ratio decreases with the increase of LDR. For the tested Berea sandstones, Poisson’s ratio standardizing factor is between 0.57 and 1.11. (3) Bulk modulus of Berea sandstone samples decreases with the increase of LDR, while shear modulus increases with LDR increases. Both bulk modulus and shear modulus increase with the increase of sample size. (4) The principal failure modes were analyzed. The failure modes of the tested Berea sandstones are axial splitting and shear failure. Stocky samples ( LDR < 2 ) tend to go axial splitting, while slender samples ( LDR > 2 ) tend to show shear failure.


Sign in / Sign up

Export Citation Format

Share Document