scholarly journals Spatiotemporal Rainfall Distribution of Soan River Basin, Pothwar Region, Pakistan

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Fiaz Hussain ◽  
Ghulam Nabi ◽  
Ray-Shyan Wu

This study evaluates the spatiotemporal rainfall variability over the semimountainous Soan River Basin (SRB) of sub-Himalayan Pothwar region, Pakistan. The temporal rainfall trend analysis of sixteen rain gauges was performed on annual basis with long-term (1981–2016) data. The results depicted that there is substantial year-to-year and season-to-season variability in rainfall patterns, and rainfall patterns are generally erratic in nature. The results highlight that most of the highland rainfall stations showed decreasing trends on annual basis. The central and lowland stations of the study area recorded an increasing trend of rainfall except for Talagang station. The average annual rainfall of the study area ranges between 492 mm and 1710 mm in lowland and high-altitude areas, respectively. Of the whole year’s rainfall, about 70 to 75% fall during the monsoon season. The rainfall spatial distribution maps obtained using the inverse distance weighting (IDW) method, through the GIS software, revealed the major rainfall range within the study area. There is a lack of water during postmonsoon months (November–February) and great differences in rainfall amounts between the mountainous areas and the lowlands. There is a need for the rational management of mountainous areas using mini and check dams to increase water production and stream regulation for lowland areas water availability. The spatiotemporal rainfall variability is crucial for better water resource management schemes in the study area of Pothwar region, Pakistan.

2021 ◽  
Vol 14 (1) ◽  
pp. 96
Author(s):  
Niranga Alahacoon ◽  
Mahesh Edirisinghe ◽  
Matamyo Simwanda ◽  
ENC Perera ◽  
Vincent R. Nyirenda ◽  
...  

This study reveals rainfall variability and trends in the African continent using TAMSAT data from 1983 to 2020. In the study, a Mann–Kendall (MK) test and Sen’s slope estimator were used to analyze rainfall trends and their magnitude, respectively, under monthly, seasonal, and annual timeframes as an indication of climate change using different natural and geographical contexts (i.e., sub-regions, climate zones, major river basins, and countries). The study finds that the highest annual rainfall trends were recorded in Rwanda (11.97 mm/year), the Gulf of Guinea (river basin 8.71 mm/year), the tropical rainforest climate zone (8.21 mm/year), and the Central African region (6.84 mm/year), while Mozambique (−0.437 mm/year), the subtropical northern desert (0.80 mm/year), the west coast river basin of South Africa (−0.360 mm/year), and the Northern Africa region (1.07 mm/year) show the lowest annual rainfall trends. There is a statistically significant increase in the rainfall in the countries of Africa’s northern and central regions, while there is no statistically significant change in the countries of the southern and eastern regions. In terms of climate zones, in the tropical northern desert climates, tropical northern peninsulas, and tropical grasslands, there is a significant increase in rainfall over the entire timeframe of the month, season, and year. This implies that increased rainfall will have a positive effect on the food security of the countries in those climatic zones. Since a large percentage of Africa’s agriculture is based only on rainfall (i.e., rain-fed agriculture), increasing trends in rainfall can assist climate resilience and adaptation, while declining rainfall trends can badly affect it. This information can be crucial for decision-makers concerned with effective crop planning and water resource management. The rainfall variability and trend analysis of this study provide important information to decision-makers that need to effectively mitigate drought and flood risk.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2055 ◽  
Author(s):  
Sekela Twisa ◽  
Manfred F. Buchroithner

In some parts of Africa, rainfall variability has resulted in widespread droughts and floods, thus posing a substantial challenge to water availability in rural areas, especially drinking water. Therefore, due to increasing water demands, increases in the population, and economic development, water supply systems are under constant stress. One of the critical uncertainties surrounding the effects of rainfall variability in Africa is the significant impact that it imposes on rural water supply services. The present study analyzes the trends in annual and seasonal rainfall time series in the Wami River Basin to see if there have been any significant changes in the patterns during the period 1983–2017 and how they affect the access to water supply services in rural areas. The study analyzes the trends of rainfall series of three stations using simple regression, Mann–Kendal Test and Sen’s Slope Estimator. The water point mapping datasets were analyzed considering seasonal variation. The analysis showed a statistically significant positive trend in annual rainfall at Kongwa and March–April–May (MAM) seasonal rainfall at Dakawa. The maximum increase in annual rainfall occurred at Kongwa (5.3 mm year−1) and for MAM seasonal data at Dakawa (4.1 mm year−1). Water points were found to be significantly affected by seasonal changes, both in terms of availability and quality of water. There also exists a strong relationship between rural water services and seasons.


Climate ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 75 ◽  
Author(s):  
Stefanos Stefanidis ◽  
Dimitrios Stathis

In this study, the authors evaluated the spatial and temporal variability of rainfall over the central Pindus mountain range. To accomplish this, long-term (1961–2016) monthly rainfall data from nine rain gauges were collected and analyzed. Seasonal and annual rainfall data were subjected to Mann–Kendall tests to assess the possible upward or downward statistically significant trends and to change-point analyses to detect whether a change in the rainfall time series mean had taken place. Additionally, Sen’s slope method was used to estimate the trend magnitude, whereas multiple regression models were developed to determine the relationship between rainfall and geomorphological factors. The results showed decreasing trends in annual, winter, and spring rainfalls and increasing trends in autumn and summer rainfalls, both not statistically significant, for most stations. Rainfall non-stationarity started to occur in the middle of the 1960s for the annual, autumn, spring, and summer rainfalls and in the early 1970s for the winter rainfall in most of the stations. In addition, the average magnitude trend per decade is approximately −1.9%, −3.2%, +0.7%, +0.2%, and +2.4% for annual, winter, autumn, spring, and summer rainfalls, respectively. The multiple regression model can explain 62.2% of the spatial variability in annual rainfall, 58.9% of variability in winter, 75.9% of variability in autumn, 55.1% of variability in spring, and 32.2% of variability in summer. Moreover, rainfall spatial distribution maps were produced using the ordinary kriging method, through GIS software, representing the major rainfall range within the mountainous catchment of the study area.


Author(s):  
M. Broich ◽  
M. G. Tulbure

Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB), an area that covers over 1M km<sup>2</sup>, as a case study. The MDB is the country’s primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999–2009). Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. <br><br> We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images), Bureau of Meteorology data and one decade of MODIS data. <br><br> Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a ‘boom’ and ‘bust’ cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. <br><br> Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and Okavango River delta in Africa or the Mekong River Basin in Southeast Asia.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 27-36
Author(s):  
RANJAN PHUKAN ◽  
D. SAHA

Rainfall in India has very high temporal and spatial variability. The rainfall variability affects the livelihood and food habits of people from different regions. In this study, the rainfall trends in two stations in the north-eastern state of Tripura, namely Agartala and Kailashahar have been studied for the period 1955-2017. The state experiences an annual mean of more than 2000 mm of rainfall, out of which, about 60% occurs during the monsoon season and about 30% in pre-monsoon. An attempt has been made to analyze the trends in seasonal and annual rainfall, rainy days and heavy rainfall in the two stations, during the same period.Non-parametric Mann-Kendall test has been used to find out the significance of these trends. Both increasing and decreasing trends are observed over the two stations. Increasing trends in rainfall, rainy days and heavy rainfall are found at Agartala during pre-monsoon season and decreasing trends in all other seasons and at annual scale. At Kailashahar, rainfall amount (rainy days & heavy rainfall) is found to be increasing during pre-monsoon and monsoon seasons (pre-monsoon season). At annual scale also, rainfall and rainy days show increasing trends at Kailashahar. The parameters are showing decreasing trends during all other seasons at the station. Rainy days over Agartala show a significantly decreasing trend in monsoon, whereas no other trend is found to be significant over both the stations.  


Author(s):  
M. Broich ◽  
M. G. Tulbure

Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB), an area that covers over 1M&thinsp;km<sup>2</sup>, as a case study. The MDB is the country’s primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999&ndash;2009). Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. <br><br> We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images), Bureau of Meteorology data and one decade of MODIS data. <br><br> Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a ‘boom’ and ‘bust’ cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. <br><br> Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and Okavango River delta in Africa or the Mekong River Basin in Southeast Asia.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 205-222 ◽  
Author(s):  
NEERAJ KUMAR ◽  
C. C. PANCHAL ◽  
S. K. CHANDRAWANSHI ◽  
J. D. THANKI

On the basis of past 115 years (1901-2015) rainfall data of five districts of south Gujarat, the Mann-Kendall trend, Sen’s slope and regression slope showed that annual and monsoon rainfall at Valsad, Dang and Surat shows the increasing trend while, that of Navsari and Bharuch districts are declining. The monsoon season (summer monsoon) rainfall variability of Valsad, Dang, Surat, Navsari and Bharuch districts was recorded is 30.1%, 30.9%, 35.9%. 33.3% and 38.6%. The high coefficient of variation (CV) denoted that the variability of rainfall is not equally distributed and the amount of rainfall is lowest. The Bharuch district the annual and monsoon CV per cent denoted that the variability of rainfall in both seasons are very high. Valsad was recorded lowest CV with highest rainfall while the data are represent that variability of rainfall which can varies Bharuch to Dang in different districts of south Gujarat. The data shows that Dang district comes under high rainfall and Bharuch under low rainfall on south Gujarat. A low standard deviation indicates that the data points tend to be close to the mean of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values. Similarly high SD is reported at Dang district because of high range of rainfall and lowest SD is found at Bharuch district because of low rainfall variability. The rainfall distribution different season viz., pre monsoon, monsoon post monsoon and winter season, the highest present contribution of rainfall is observed during monsoon season followed by post monsoon in all the five districts of south Gujarat. Rainfall contribution during remaining months was less than one per cent. While month wise analysis shows during monsoon season highest rainfall per cent contribution to annual rainfall is in July followed by August and June months at all the five districts of south Gujarat.


Tanguar haor is located in the north-eastern region of Bangladesh and frequently experienced extreme events such as high rainfall that affect the haor basin area with flash floods on a regular basis. Tanguar haor is usually foreseen to severe disastrous conditions for the reason of changes in rainfall patterns and water extent. The study was conducted at Tanguar haor of Sunamganj district. This study mainly focuses on the year to year rainfall variability (2001-2018) and water extent (2002-2018) in the Tanguar haor area. The specific objective of the study was to explore the effect of rainfall variability and water extent in Tanguar haor. Information and data were collected mainly from secondary sources. Analysis of data and assess the ecological effect of changes in rainfall patterns and water extent were the main activities of the study along with others. The findings of the study were changeability in rainfall patterns and water extent frequently caused a flash flood in pre-monsoon and monsoon season in the Tanguar haor area. Flash flood causes a vast amount of financial loss for the living people of the Tanguar haor that makes them more vulnerable to live well. The result of this study may help to gather new knowledge on the consequences of rainfall variability and water extent in the haor basin area. It may add significance to the management of flash flood and severe stress in the haor basin area.


2017 ◽  
pp. 63-76
Author(s):  
Nattapon Mahavik

Rainfall intensity and frequency are important parameters in agricultural development and water resource management. The middle of the Indochina peninsula climate is characterized by rainfall variability associated with complex terrains. The present study focuses on spatial seasonal extreme precipitation trends over the middle of the Indochina Peninsula for the 30 year period from 1978-2007. Daily gridded precipitation data obtained at 0.5° horizontal grid resolution from APHRODITE (Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources) was used to detect the spatial trends with the use of the Man-Kendall and Theil-Sen approach. Extreme precipitation indices were selected from the WMO–CCL/CLIVAR list of extreme precipitation indices focusing on intensity and frequency. The study shows a consistently increasing upward trend at 10.04 dfrom the WDAY index. In seasonal analysis, the pre-monsoon trend shows a significant upward trend in the PRCTOT index, while the WDAY index for pre-monsoon season has the highest correlation coefficient in downward trend. Spatial analysis of extreme precipitation indices shows that the PRCTOT index of the pre-monsoon season has the largest percentage change in significant upward trend over the northern Basins that are consistent with MAX and Mean but not for WDAY. In addition, the inter-annual relationship between the Oceanic Nino Index and PRCTOT is shown in relation with the La Niña phase for both April and May.


Author(s):  
Dr. Sumit M. Dhak

A detailed statistical analysis of monthly, seasonal and annual rainfall for Tehsils of Palghar district were carried out using 22 years (1998-2019) daily rainfall data taken from Department of Agriculture, Maharashtra State. The mean, standard deviation and coefficient of variation for monthly, seasonal and annual rainfall were computed for tehsils of Palghar districts. The month of July received maximum monthly mean rainfall for all years (1998 to 2019) in tehsils of Palghar district. The result showed that monthly mean rainfall in month of July was maximum at Jawhar (1147.1 mm) followed by Vikramgad (1071.9 mm), Talasari (1014.3 mm), Vasai (1009.9 mm), Wada (998.5 mm), Mokhada (949.6 mm), Palghar (948.7 mm) and Dahanu (841.6) with contributes 40.4 %, 39.1 %, 38.5 %, 35.4 %, 37.3 %, 37.3 %, 36.9 % and 36.3 % of the annual mean rainfall (1998 to 2019) respectively. The result showed that contribution of rainfall during Monsoon season ranges from 95.5 % to 97.0 % of the annual total rainfall for tehsils of Palghar District. The result showed that average annual rainfall (1998 to 2019) of Vasai, Jawhar, Vikramgad, Wada, Talasari, Palghar, Mokhada and Dahanu were 2855.9 mm, 2839.1 mm, 2738.9 mm, 2674.0 mm, 2633.3 mm, 2570.8 mm, 2543.6 mm and 2318.5 mm respectively.


Sign in / Sign up

Export Citation Format

Share Document