scholarly journals Study of the Influence of Plaque Growth and Hydrostatic Properties in an Atherosclerotic Artery, for the Prevention of Arterial Wall Damage: Application to Vascular Diseases

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
J. R. Tsafack Nzifack ◽  
J. S. Mabekou Takam ◽  
R. Moutou Pitti ◽  
M. Fogue ◽  
P. K. Talla

The objective of this work is to prevent damage of the arterial wall, using a theoretical model of hyperelastic, anisotropic, and dynamic behavior of the human arterial. This work is mainly focused on the properties of the hydrostatic stress and the evolution of stenosis. This work is mainly focused on the properties of the hydrostatic stress and the evolution of stenosis in order to understand the effect of the size of the plaque deposit, the loss of elasticity of the wall, and the increase in the density of the blood on the mechanical behavior of the human arterial wall. The great contribution of this work shows us that increasing the size of the plaque also increases arterial stress, and the radial growth of the plaque is very dangerous compared to the longitudinal growth. Furthermore, atherosclerosis promotes the loss of elasticity of the arterial wall and increases the density of blood mass. Indeed, all these subsequent phenomena increase arterial stress. All the results are in good agreement with the expected result of the literature and could play an important role in the diagnosis of the patient with an arterial injury. It will also help the doctor and the surgeon to make a good clinical decision and good treatment planning.

1969 ◽  
Vol 59 (1) ◽  
pp. 399-407
Author(s):  
Robert B. Herrmann

Abstract The propagation of Rayleigh waves with periods of 0.4 to 2.0 seconds across the Cincinnati arch is investigated. The region of investigation includes southern Indiana and Ohio and northern Kentucky. The experimental data for all paths are fitted by a three-layer model of varying layer thickness but of fixed velocity in each layer. The resulting inferred structural picture is in good agreement with the known basement trends of the region. The velocities of the best fitting theoretical model agree well with velocity-depth data from a well in southern Indiana.


1995 ◽  
Vol 377 ◽  
Author(s):  
M. Goerlitzer ◽  
P. Pipoz ◽  
H. Beck ◽  
N. Wyrsch ◽  
A. V. Shah

ABSTRACTTransient photoconductive response of undoped a-Si:H has been studied; the changes were analysed between two slightly different steady-state illumination conditions, at room temperature. A theoretical model is developed to describe transient photoconductivity; it yields good agreement with the measured curves for a whole range of light intensities. Numerical evaluations allows one to extract the recombination time of electrons. Comparison with steady-state photoconductivity yields a band mobility of free electrons between 0.1 and 6 cm2V−1s−1, depending upon sample quality.


1971 ◽  
Vol 93 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Nam P. Suh ◽  
C. L. Tsai

The transient thermocouple response characteristics in deflagrating low-conductivity materials with high temperature gradients were investigated theoretically and experimentally. The theoretical model considers the thermocouple bead and lead wires separately, and the two resulting partial differential equations are solved simultaneously by a finite difference technique. The experimental results are obtained by embedding various size thermocouple wires in double-base solid propellants and consequently measuring the temperature profiles and the surface temperatures. The theoretical model is used to predict the experimentally measured temperatures. There is good agreement. The experimentally measured values are smaller than the correct surface temperature, corresponding to the model prediction for zero wire diameter, by at least 20 percent even when 1/2-mil thermocouple wire is used. Both the experimental and theoretical results show a plateau when the thermocouple bead emerges from the solid into the gas phase. The theoretical results also show that there is an optimum ratio of. the thermocouple bead diameter to the wire diameter, which is found to be close to three


2001 ◽  
Vol 280 (6) ◽  
pp. H2752-H2760 ◽  
Author(s):  
P. Fridez ◽  
A. Rachev ◽  
J.-J. Meister ◽  
K. Hayashi ◽  
N. Stergiopulos

Recent experimental studies have shown significant alterations of the vascular smooth muscle (VSM) tone when an artery is subjected to an elevation in pressure. Therefore, the VSM participates in the adaptation process not only by means of its synthetic activity (fibronectins and collagen) or proliferative activity (hypertrophy and hyperplasia) but also by adjusting its contractile properties and its tone level. In previous theoretical models describing the time evolution of the arterial wall adaptation in response to induced hypertension, the contribution of VSM tone has been neglected. In this study, we propose a new biomechanical model for the wall adaptation to induced hypertension, including changes in VSM tone. On the basis of Hill's model, total circumferential stress is separated into its passive and active components, the active part being the stress developed by the VSM. Adaptation rate equations describe the geometrical adaptation (wall thickening) and the adaptation of active stress (VSM tone). The evolution curves that are derived from the theoretical model fit well the experimental data describing the adaptation of the rat common carotid subjected to a step increase in pressure. This leads to the identification of the model parameters and time constants by characterizing the rapidity of the adaptation processes. The agreement between the results of this simple theoretical model and the experimental data suggests that the theoretical approach used here may appropriately account for the biomechanics underlying the arterial wall adaptation.


2006 ◽  
Vol 291 (1) ◽  
pp. H394-H402 ◽  
Author(s):  
Magnus Cinthio ◽  
Åsa Rydén Ahlgren ◽  
Jonas Bergkvist ◽  
Tomas Jansson ◽  
Hans W. Persson ◽  
...  

There has been little interest in the longitudinal movement of the arterial wall. It has been assumed that this movement is negligible compared with the diameter change. Using a new high-resolution noninvasive ultrasonic method, we measured longitudinal movements and diameter change of the common carotid artery of 10 healthy humans. During the cardiac cycle, a distinct bidirectional longitudinal movement of the intima-media complex could be observed in all the subjects. An antegrade longitudinal movement, i.e., in the direction of blood flow, in early systole [0.39 mm (SD 0.26)] was followed by a retrograde longitudinal movement, i.e., in the direction opposite blood flow [−0.52 mm (SD 0.27)], later in systole and a second antegrade longitudinal movement [0.41 mm (SD 0.33)] in diastole. The corresponding diameter change was 0.65 mm (SD 0.19). The adventitial region showed the same basic pattern of longitudinal movement; however, the magnitude of the movements was smaller than that of the intima-media complex, thereby introducing shear strain and, thus, shear stress within the wall [maximum shear strain between the intima-media complex and the adventitial region was 0.36 rad (SD 0.26). These phenomena have not previously been described. Measurements were also performed on the abdominal aorta ( n = 3) and brachial ( n = 3) and popliteal ( n = 3) arteries. Our new information seems to be of fundamental importance for further study and evaluation of vascular biology and hemodynamics and, thus, for study of atherosclerosis and vascular diseases.


1994 ◽  
Author(s):  
K. Imanari

A theoretical model is proposed for the spanwise mixing caused by periodic incoming wakes in the context of turbulent diffusion in axial-flow compressors prior to repeating-stage conditions. The model was used to predict the spanwise mixing coefficients across a stator of a single-stage compressor without IGVs. The correctness of the theory was demonstrated by the results that the predicted values were in good agreement with the associated experimental data.


Author(s):  
Jungsil Kim ◽  
Alexander Dupay ◽  
Seungik Baek

The mechanical properties of arterial wall have been assumed isotropic and homogeneous, but advances in biomedical imaging and computational biomechanics bring a need for understanding regional difference in the biomechanical properties of arties. Particularly, vascular diseases such as aortic aneurysm and dissection are likely to be developed in the elderly and they are still life-threatening. Thus understanding of the regional variation in the mechanical behavior of arteries is critical for the clinical treatments and biomedical engineering applications.


2018 ◽  
Vol 933 ◽  
pp. 136-141
Author(s):  
Rong Cao ◽  
Qing Lin Jin

Ordered porous copper with elongated pores has been fabricated by a continuous unidirectional solidification method in a hydrogen gas atmosphere with high pressure. The porosity of the ordered porous copper is significantly affected by the pressure of hydrogen. A theoretical model is developed to get the relation between the porosity and the processing parameters. The calculated values are in good agreement with the experimental results. Key words: Unidirectional solidification; Ordered porous copper; Porosity; Modeling.


2009 ◽  
Vol 2009 ◽  
pp. 1-8
Author(s):  
Chun Jiang

The theoretical model of Yb3+-Er3+-Tm3+-codoped fiber amplifier pumped by 980 nm laser is proposed, and the rate and power propagation equations are numerically solved to analyze the dependences of the gains at 1500 nm and 1600 nm bands on the activator concentrations, fiber length, pump power, and signal wavelength. The numerical results show that our model is in good agreement with experimental result, and with pump power of 200 mW and fiber length varying from 0.15 to 1.5 m, the gains at the two bands may reach 10.0–20.0 dB when the codoping concentrations of Yb3+, Er3+, and Tm3+ are in the ranges 1.0–3.0×1025, 1.0–3.0×1024, and 1.0–3.0×1024 ions/m3, respectively. The fiber parameters may be optimized to flatten the gain spectra.


Author(s):  
A Robson ◽  
T Grassie ◽  
J Kubie

A full theoretical model of a low-temperature differential Stirling engine is developed in the current paper. The model, which starts from the first principles, gives a full differential description of the major components of the engine: the behaviour of the gas in the expansion and the compression spaces; the behaviour of the gas in the regenerator; the dynamic behaviour of the displacer; and the power piston/flywheel assembly. A small fully instrumented engine is used to validate the model. The theoretical model is in good agreement with the experimental data, and describes well all features exhibited by the engine.


Sign in / Sign up

Export Citation Format

Share Document