scholarly journals End-of-Life Options for (Bio)degradable Polymers in the Circular Economy

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Wanda Sikorska ◽  
Marta Musioł ◽  
Barbara Zawidlak-Węgrzyńska ◽  
Joanna Rydz

End-of-life options for plastics include recycling and energy recovery (incineration). Taking into account the polymeric waste, recycling is the intentional action that is aimed at reducing the amount of waste deposited in landfills by industrial use of this waste to obtain raw materials and energy. The incineration of waste leads to recovery of the energy only. Recycling methods divide on mechanical (reuse of waste as a full-valuable raw material for further processing), chemical (feedstock recycling), and organic (composting and anaerobic digestion). The type of recycling is selected in terms of the polymeric material, origin of the waste, possible toxicity of the waste, and its flammability. The (bio)degradable polymers show the suitability for every recycling methods. But recycling method should be used in such a form that it is economically justified in a given case. Organic recycling in a circular economy is considered to be the most appropriate technology for the disposal of compostable waste. It is addressed for plastics capable for industrial composting such as cellulose films, starch blends, and polyesters. The biological treatment of organic waste leads also to a decrease of landfills and thereby reducing methane emissions from them. If we add to their biodegradability the absence of toxicity, we have a biotechnological product of great industrial interest. The paper presents the overview on end-of-life options useful for the (bio)degradable polymers. The principles of the circular economy and its today development were also discussed.

2020 ◽  
Vol 8 ◽  
Author(s):  
Duygu Karabelli ◽  
Steffen Kiemel ◽  
Soumya Singh ◽  
Jan Koller ◽  
Simone Ehrenberger ◽  
...  

The growing number of Electric Vehicles poses a serious challenge at the end-of-life for battery manufacturers and recyclers. Manufacturers need access to strategic or critical materials for the production of a battery system. Recycling of end-of-life electric vehicle batteries may ensure a constant supply of critical materials, thereby closing the material cycle in the context of a circular economy. However, the resource-use per cell and thus its chemistry is constantly changing, due to supply disruption or sharply rising costs of certain raw materials along with higher performance expectations from electric vehicle-batteries. It is vital to further explore the nickel-rich cathodes, as they promise to overcome the resource and cost problems. With this study, we aim to analyze the expected development of dominant cell chemistries of Lithium-Ion Batteries until 2030, followed by an analysis of the raw materials availability. This is accomplished with the help of research studies and additional experts’ survey which defines the scenarios to estimate the battery chemistry evolution and the effect it has on a circular economy. In our results, we will discuss the annual demand for global e-mobility by 2030 and the impact of Nickel-Manganese-Cobalt based cathode chemistries on a sustainable economy. Estimations beyond 2030 are subject to high uncertainty due to the potential market penetration of innovative technologies that are currently under research (e.g. solid-state Lithium-Ion and/or sodium-based batteries).


2018 ◽  
Vol 27 (4) ◽  
pp. 096369351802700 ◽  
Author(s):  
Mehmet Önal ◽  
Gökdeniz Neşer

Glass reinforced polyester (GRP), as a thermoset polymer composites, dominates boat building industry with its several advantages such as high strength/weight ratio, cohesiveness, good resistance to environment. However, proper recovering and recycling of GRP boats is became a current environmental requirement that should be met by the related industry. In this study, to propose in a cost effective and environmentally friendly way, Life Cycle Assessment (LCA) has been carried out for six scenarios include two moulding methods (namely Hand Lay-up Method, HLM and Vacuum Infusion Method, VIM) and three End-of-Life (EoL) alternatives(namely Extruding, Incineration and Landfill) for a recreational boat's GRP hulls. A case study from raw materials purchasing phase to disposal/recycling stages has been established taking 11 m length GRP boat hull as the functional unit. Analysis show that in the production phase, the impacts are mainly due to the use of energy (electricity), transport and raw material manufacture. Largest differences between the methods considered (HLM and VIM) can be observed in the factors of marine aquatic ecotoxicity and eutrophication while the closest ones are abiotic depletion, ozon layer depletion and photochemical oxidation. The environmental impact of VIM is much higher than HLM due to its higher energy consumption while vacuum infusion method has lower risk than hand lay-up method in terms of occupational health by using less raw material (resin) in a closed mold. In the comparison of the three EoL techniques, the mechanical way of recycling (granule extruding) shows better environmental impacts except terrestrial ecotoxicity, photochemical oxidation and acidification. Among the EoL alternatives, landfill has the highest environmental impacts except ‘global warming potential’ and ‘human toxicity’ which are the highest in extrusion. The main cause of the impacts of landfill is the transportation needs between the EoL boats and the licenced landfill site. Although it has the higher impact on human toxicity, incineration is the second cleaner alternative of EoL techniques considered in this study. In fact that the similar trend has been observed both in production and EoL phases of the boat. It is obvious that using much more renewable energy mix and greener transportation alternative can reduce the overall impact of the all phases considerably.


2020 ◽  
Vol 12 (23) ◽  
pp. 9861
Author(s):  
Jorge Martínez Leal ◽  
Stéphane Pompidou ◽  
Carole Charbuillet ◽  
Nicolas Perry

In the context of a circular economy, one can observe that (i) recycling chains are not adapted enough to the end-of-life products they have to process and that (ii) products are not sufficiently well designed either to integrate at best their target recycling chain. Therefore, a synergy between product designers and recycling-chains stakeholders is lacking, mainly due to their weak communication and the time-lag between the product design phase and its end-of-life treatment. Many Design for Recycling approaches coexist in the literature. However, to fully develop a circular economy, Design from Recycling also has to be taken into account. Thus Re-Cycling, a complete circular design approach, is proposed. First, a design for recycling methodology linking recyclability assessment to product design guidelines is proposed. Then, a design from recycling methodology is developed to assess the convenience of using secondary raw materials in the design phase. The recyclability of a smartphone and the convenience of using recycled materials in a new cycle are both analyzed to demonstrate our proposal. The Fairphone 2® and its treatment by the WEEE French takeback scheme are used as a case study.


Green ◽  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Wolfram Palitzsch ◽  
Ulrich Loser

AbstractIndium, selenium, tellurium, gallium, molybdenum, cadmium and silicon are some of the major elements used in photovoltaic cells. Fully aware of the limited availability of these metals in future, recycling has been recognized as the most advisable end-of-life strategy to save these raw materials from turning into production wastes. On the other hand, statutory measures such as “Kreislaufwirtschaftsgesetz” (the German law encouraging closed-loop economy) aim to achieve a maximum quota of recycling and a minimum use of resources such as energy and raw materials. By the year of 2050, end-of-life photovoltaic panels are anticipated to amount to 9.57 million tons [1]. Although we are not there yet, discussions on recycling have already started. We have to prepare for higher waste volumes expected in the coming years. But already today we need to solve some environmental problems like loss of conventional resources (e.g., glass) and rare metals [2]. All of the known approaches for recycling photovoltaic semiconductor material seem economically and environmentally inefficient [3, 4]. In this paper, we report about reclaiming metals from scrap of thin film systems and associated photovoltaic manufacturing wastes like sandblasting dust and overspray. We also report one universal wet-chemical treatment for reclaiming the metals from CIS, CIGS or CdTe photovoltaic waste. Further, we discuss the application of our method to new PV systems, such as substrates other than glass (stainless steel, aluminum or plastic foil sheets) and alternative semiconductor alloys such as GaAs.


2018 ◽  
Vol 272 ◽  
pp. 273-279 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools that enable the quantification, measurement or comparison of material, technological and construction variants. Tools of this kind which have been developed around the world in recent years include various indicators, indexes, etc. Generally, technical, economic, ecological and socio-cultural areas must all be included. Such a tool can be used as a powerful marketing aid and as support for the transition to the “circular economy”. Life Cycle Assessment (LCA) procedures are also used, alongside other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its effect on the environment. Processes starting with the mining of mineral resources and including their transport, production and use up to their final processing as waste (recycling) are all taken into account. In addition, consideration is given to energy and raw material costs, and to environmental impact throughout the whole life cycle – e.g. through emissions. The presented contribution focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance against the effect of degrading influences. Sustainability factors are also determined using information regarding service life and “eco-costs”. The aim is to present a suitable methodology which can simplify decision-making concerning the design and choice of concrete mixes from a wider perspective, i.e. not only from the aspects of load-bearing capacity or durability.


2019 ◽  
pp. 1-16
Author(s):  
Olja Munitlak Ivanovic

Ethical and ecological responsibility represent the root of sustainable development taking into account intergenerational justice. Mass production and consumption have left negative effects on the environment. Disregarding ecological responsibility, production processes were mainly based on uncontrollable use of raw materials and non-renewable energy sources. Taking into account limitation of raw materials, economic and ecological disasters, a concept of resilience has been developed to make all elements of society flexible in terms of unwanted shocks. This chapter describes two conceptual economic models: linear and circular. The linear model is based on the principle “take, produce, consume, and throw,” meaning that usability of waste is reduced and that waste is simply thrown out after consumption. Circular economic model takes into account environmental responsibility, but it also makes companies more competitive. Waste is treated and processed adequately and used as raw material in production, thus increasing competitiveness. Waste that cannot be processed is disposed permanently.


2021 ◽  
Vol 115 ◽  
pp. 95-100
Author(s):  
Sylwia Oleńska ◽  
Justyna Biernacka

Management of post-production wood waste in the aspect of circular economy. Sustainable resource management involves turning waste into resources. The estimation of various waste streams and their potential use as secondary raw materials underlies the circular economy. The management of wood waste in terms of the Circular Economy should assume material use of this waste before energy use. One of the possibilities of material management of this waste is the use of biological treatment through composting. Input materials for the composting process should have technological and physical-chemical characteristics, respectively. The aim of this study was to characterize the wood raw material (wood waste as a by-product) and qualify it for the composting process on the basis of its composition. Based on the literature research, it was found that there is possibility of using these wastes for management through biological disposal. The obtained composts from wood waste can be used as a raw material to supply the soil with humic substances and mineral compounds.


2016 ◽  
Vol 7 (2) ◽  
pp. 121-128 ◽  
Author(s):  
B. Mezei ◽  
N. Boros

Aircraft manufacturing industry has developed dynamically in the last decades. Reinforced polymers have become the most dominant raw materials, while the recycling rate of the generated industrial waste has also increased. The greatest aircraft manufacturers have integrated environmental protection in their production process, while defining clear environmental goals for the future. In this study, we have analyzed the environmental considerations of the aircraft manufacturing industry through the examples of Boeing and Airbus companies. Our goal was to define the possible environmental impacts of the aircraft industry, focusing on raw material usage and waste recycling.


2021 ◽  
pp. 0734242X2199190
Author(s):  
Spiros Karamoutsos ◽  
Theofani Tzevelekou ◽  
Angeliki Christogerou ◽  
Eleni Grilla ◽  
Antonios Gypakis ◽  
...  

The biggest challenge for our society, in order to foster the sustainable circular economy, is the efficient recycling of wastes from industrial, commercial, domestic and other streams. The transition to a circular economy is the goal of the European Commission’s Circular Economy Action, which was first launched in 2015. In 2020 the above action plan announced initiatives along the entire life cycle of the product, with the aim to make sustainable products the norm in the EU. Therefore, it is anticipated that the above action will result in an increase in Europe’s economic competitiveness, sustainability, resource efficiency and resource security. Within this context, the suitability of ferroalumina as a raw material in the blast furnace is investigated. Ferroalumina is the product of the high-pressure filter press dewatering process of the Greek red mud generated during the production of alumina by means of the Bayer cycle. Ferroalumina is a low-cost raw material and its possible charging in the blast furnace and/or steelmaking aggregates is a step towards industrial symbiosis, where the wastes, namely by-products, of an industry or an industrial process, become the raw materials for another. In the present work the effect of ferroalumina addition as a raw material was examined by smelting ferroalumina, blast furnace-slag, lime and scrap at 1550°C in a graphite crucible and a constant slag basicity. The increase of the alumina content in the slag improves the desulfurization capacity. Moreover, the silicon exchange between slag and metal was examined. The results indicate that the alkalis’ capacity of the slag increases with the addition of ferroalumina. The analysis of the finally obtained slag suggests that it could be suitable for utilization in slag-cement production.


2021 ◽  
Vol 13 (15) ◽  
pp. 8356
Author(s):  
Hernán Darío Castaño Castrillón ◽  
Carlos Mario Gutiérrez Aguilar ◽  
Beatriz Elena Angel Álvarez

The circular economy is a process through which elements that have already been used are reincorporated and given a second use so that they can reduce the consumption of virgin raw materials. This article shows how, from the reuse of an agro-industrial waste such as corn husks, a biomaterial can be developed that manages to standardize the properties of materials such as paper and cardboard, thus allowing the development of single-use products that replace the excessive expense of materials such as polymers. In this article, it will be possible to show how from the process of transforming an agro-industrial waste into a raw material base, it is possible not only to reduce the number of raw materials discarded but also to redesign a product that not only contributes to the environmental component but also facilitates the processes of economic sustainability when generating products. As a practical case, a comparison is made between traditional fast-food packaging and how from these, a new packaging proposal can be generated, which starts from the principles of circular economy and complements sustainable design processes to make more efficient manufacturing of the mentioned product.


Sign in / Sign up

Export Citation Format

Share Document