scholarly journals Gender Variations in the Oral Microbiomes of Elderly Patients with Initial Periodontitis

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jie Zhao ◽  
Ying-Hui Zhou ◽  
Ya-Qiong Zhao ◽  
Yao Feng ◽  
Fei Yan ◽  
...  

Periodontitis is a globally prevalent disease that imposes a functional and aesthetic burden on patients. The oral microbiome influences human health. The aim of this study was at assessing gender variation in the subgingival bacterial microbiome of elderly patients with initial periodontitis and to determine the causes of this variation. Twelve males and twenty females (range 50–68 years old) with initial periodontitis provided subgingival plaque samples. 16S rRNA gene sequencing, QIIME-based data processing, and statistical analyses were carried out using several different analytical approaches to detect differences in the oral microbiome between the two groups. Males had higher Chao1 index, observed species, and phylogenetic diversity whole tree values than females. Analysis of β-diversity indicated that the samples were reasonably divided by the gender. The linear discriminant analysis effect size showed that the most representative biomarkers were the genus Haemophilus in males, whereas the dominant bacteria in females were Campylobacter. Kyoto Encyclopedia of Genes and Genomes analysis showed that predicting changes in the female oral microbiota may be related to the immune system and immune system diseases are the main factor in males. These data suggest that gender may be a differentiating factor in the microbial composition of subgingival plaques in elderly patients with initial periodontitis. These results could deepen our understanding of the role of gender in the oral microbiota present during initial periodontitis.

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4224
Author(s):  
Ramon V. Cortez ◽  
Andrea Fernandes ◽  
Luiz Gustavo Sparvoli ◽  
Marina Padilha ◽  
Rubens Feferbaum ◽  
...  

The initial colonization of the human microbiota is of paramount importance. In this context, the oropharyngeal administration of colostrum is a safe, viable, and well-tolerated practice even by the smallest preterm infants. Therefore, this study evaluated the effects of oropharyngeal administration of colostrum on the establishment of preterm infants’ oral microbiota. A longitudinal observational study was carried out with 20 premature neonates, divided into two groups: one receiving the protocol (Oropharyngeal Administration of Colostrum; OAC) and the other one receiving Standard Caare (SC). Saliva samples were collected from the newborns weekly during the study period (from the day of birth until the 21st day of life) for analysis of oral microbiota through 16S rRNA gene sequencing. We observed that the colonization of the oral microbiota of preterm newborns preseanted a higher relative abundance of Staphylococcus on the 7th day of life, mainly in the OAC group. Additionally, an increased abundance of Bifidobacterium and Bacteroides was observed in the OAC group at the first week of life. Regarding alpha and beta diversity, time was a key factor in the oral modulation of both groups, showing how dynamic this environment is in early life.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 614 ◽  
Author(s):  
Nida Murtaza ◽  
Louise Burke ◽  
Nicole Vlahovich ◽  
Bronwen Charlesson ◽  
Hayley O’Neill ◽  
...  

Although the oral microbiota is known to play a crucial role in human health, there are few studies of diet x oral microbiota interactions, and none in elite athletes who may manipulate their intakes of macronutrients to achieve different metabolic adaptations in pursuit of optimal endurance performance. The aim of this study was to investigate the shifts in the oral microbiome of elite male endurance race walkers from Europe, Asia, the Americas and Australia, in response to one of three dietary patterns often used by athletes during a period of intensified training: a High Carbohydrate (HCHO; n = 9; with 60% energy intake from carbohydrates; ~8.5 g kg−1 day−1 carbohydrate, ~2.1 g kg−1 day−1 protein, 1.2 g kg−1 day−1 fat) diet, a Periodised Carbohydrate (PCHO; n = 10; same macronutrient composition as HCHO, but the intake of carbohydrates is different across the day and throughout the week to support training sessions with high or low carbohydrate availability) diet or a ketogenic Low Carbohydrate High Fat (LCHF; n = 10; 0.5 g kg−1 day−1 carbohydrate; 78% energy as fat; 2.1 g kg−1 day−1 protein) diet. Saliva samples were collected both before (Baseline; BL) and after the three-week period (Post treatment; PT) and the oral microbiota profiles for each athlete were produced by 16S rRNA gene amplicon sequencing. Principal coordinates analysis of the oral microbiota profiles based on the weighted UniFrac distance measure did not reveal any specific clustering with respect to diet or athlete ethnic origin, either at baseline (BL) or following the diet-training period. However, discriminant analyses of the oral microbiota profiles by Linear Discriminant Analysis (LDA) Effect Size (LEfSe) and sparse Partial Least Squares Discriminant Analysis (sPLS-DA) did reveal changes in the relative abundance of specific bacterial taxa, and, particularly, when comparing the microbiota profiles following consumption of the carbohydrate-based diets with the LCHF diet. These analyses showed that following consumption of the LCHF diet the relative abundances of Haemophilus, Neisseria and Prevotella spp. were decreased, and the relative abundance of Streptococcus spp. was increased. Such findings suggest that diet, and, in particular, the LCHF diet can induce changes in the oral microbiota of elite endurance walkers.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2245
Author(s):  
Yiping Zhu ◽  
Wuyan Jiang ◽  
Reed Holyoak ◽  
Bo Liu ◽  
Jing Li

The objective of this study was to investigate the oral microbial composition of the donkey and whether basic dental treatment, such as dental floating, would make a difference to the oral microbial environment in donkeys with dental diseases using high-throughput bacterial 16S rRNA gene sequencing. Oral swab samples were collected from 14 donkeys with various dental abnormalities on day 0 (before treatment) and day 20 (twenty days after treatment). It is the first report focusing on the oral microbiome in donkeys with dental diseases and the impact of common dental procedures thereon. Identified in group Day 0 and group Day 20, respectively, were 60,439.6 and 58,579.1 operational taxonomic units (OTUs). Several taxa in Day 0 differed significantly from Day 20 at the phylum and genus levels, but no statistically significant difference was observed in richness and diversity of Day 0 and Day 20. The results also indicated that a larger-scale study focusing on healthy donkey oral microbiome, as well as the correlation of dental diseases and oral microbiomes at different time frames following more specific and consistent dental treatment, are warranted.


2020 ◽  
Vol 48 (04) ◽  
pp. 923-944 ◽  
Author(s):  
Meng Liu ◽  
Xiting Wang ◽  
Fengzhi Wu ◽  
Ning Dai ◽  
Mindan Chen ◽  
...  

Chronic insomnia is a disease which brings intense mental pain and disturbing complications to patients worldwide. The oral microbiome exhibits a mechanistic influence on human health. Therefore, it is crucial to understand the oral microbial diversity in insomnia. Tongue diagnosis has been considered a critical basic procedure in insomnia therapeutic decision-making in Traditional Chinese Medicine (TCM). Hence, it is significant to elucidate the various oral microbiome differences in chronic insomnia patients with different tongue features. In this paper, we used 16S rRNA gene sequencing and bioinformatics analysis to investigate dynamic changes in oral bacterial profile and correlations between chronic insomnia patients and healthy individuals, as well as in patients with different tongue coatings. Moreover, the relationship between the severity of insomnia and oral microbiota was explored. Our findings showed that chronic insomnia patients harbored a significantly higher diversity of oral bacteria when compared to healthy controls. More importantly, the results revealed that the diversity and relative abundance of the bacterial community was significantly altered among different tongue coatings in patients but not in healthy individuals. Oral bacteria with a relative abundance [Formula: see text]1% and [Formula: see text] among different tongue groups were considered remarkable bacteria, which included three phyla Proteobacteria, Bacteroidetes, Gracilibacteria, and four genera, Streptococcus, Prevotella_7, Rothia, and Neisseria. Our findings indicate that changes in oral microbiome correlate with tongue coatings in patients with chronic insomnia. Thus, the remarkable microbiome may provide inspiration for further studies on the correlation between tongue diagnosis and oral microbiome in chronic insomnia patients.


2021 ◽  
Author(s):  
David Schult ◽  
Sandra Reitmeier ◽  
Plamena Koyumdzhieva ◽  
Moritz Middelhof ◽  
Johanna Erber ◽  
...  

Objective: There is a growing debate about the involvement of the gut microbiome in COVID-19, although it is not conclusively understood whether the microbiome has an impact on COVID-19, or vice versa, especially as analysis of amplicon data in hospitalized patients requires sophisticated cohort recruitment and integration of clinical parameters. Here, we analyzed fecal and saliva samples from SARS-CoV-2 infected and post COVID-19 patients and controls considering multiple influencing factors during hospitalization. Design: 16S rRNA gene sequencing was performed on fecal and saliva samples from 108 COVID-19 and 22 post COVID-19 patients, 20 pneumonia controls and 26 asymptomatic controls. Patients were recruited over the first and second corona wave in Germany and detailed clinical parameters were considered. Serial samples per individual allowed intra-individual analysis. Results: We found the gut and oral microbiota to be altered depending on number and type of COVID-19-associated complications and disease severity. The occurrence of individual complications was correlated with low-risk (e.g., Faecalibacterium prausznitzii) and high-risk bacteria (e.g., Parabacteroides). We demonstrated that a stable gut bacterial composition was associated with a favorable disease progression. Based on gut microbial profiles, we identified a model to estimate mortality in COVID-19. Conclusion: Gut microbiota are associated with the occurrence of complications in COVID-19 and may thereby influencing disease severity. A stable gut microbial composition may contribute to a favorable disease progression and using bacterial signatures to estimate mortality could contribute to diagnostic approaches. Importantly, we highlight challenges in the analysis of microbial data in the context of hospitalization.


Author(s):  
Hari K Somineni ◽  
Jordan H Weitzner ◽  
Suresh Venkateswaran ◽  
Anne Dodd ◽  
Jarod Prince ◽  
...  

Abstract Background The gut and oral microbiome have independently been shown to be associated with inflammatory bowel disease (IBD). However, it is not known to what extent gut and oral microbial disease markers converge in terms of their composition in IBD. Further, the spatial and temporal variation within the oral microenvironments of IBD remain to be elucidated. Patients and Methods We used a prospectively recruited cohort of patients with IBD (n = 47) and unrelated healthy control patients (n = 18) to examine the spatial and temporal distribution of microbiota within the various oral microenvironments, represented by saliva, tongue, buccal mucosa, and plaque, and compared them with stool. Microbiome characterization was performed using 16S rRNA gene sequencing. Results The oral microbiome displayed IBD-associated dysbiosis, in a site- and taxa-specific manner. Plaque samples depicted a relatively severe degree of dysbiosis, and the disease-associated dysbiotic bacterial groups were predominantly the members of the phylum Firmicutes. Our 16S rRNA gene analyses show that oral microbiota can distinguish patients with IBD from healthy control patients, with salivary microbiota performing the best, closely matched by stool and other oral sites. Longitudinal profiles of microbial composition suggest that some taxa are more consistently perturbed than others, preferentially in a site-dependent fashion. Conclusions Collectively, these data indicate the potential of using oral microbial profiles in screening and monitoring patients with IBD. Furthermore, these results support the importance of spatial and longitudinal microbiome sampling to interpret disease-associated dysbiotic states and eventually to gain insights into disease pathogenesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ya-Qiong Zhao ◽  
Ying-Hui Zhou ◽  
Jie Zhao ◽  
Yao Feng ◽  
Zheng-Rong Gao ◽  
...  

Objective. Periodontitis is an inflammatory disease of microbial etiology caused primarily by dysbiosis of the oral microbiota. Our aim was to compare variations in the composition of the oral microbiomes of youths with severe periodontitis according to gender. Methods. Subgingival plaque samples collected from 17 patients with severe periodontitis (11 males and 6 females) were split for 16S rRNA gene sequencing. The composition, α-diversity, and β-diversity of the patients’ oral microbiomes were compared between the males and the females. Linear discriminant analysis effect size (LEfSe) was used to analyze the specific taxa enriched in the two groups. Functional profiles (KEGG pathways) were obtained using PICRUSt based on 16S rRNA gene sequencing data. Results. The Chao1 index and phylogenetic diversity whole tree were significantly higher in males than in females. The Simpson and Shannon indices were not significantly different between the two groups. β-Diversity suggested that the samples were reasonably divided into groups. The Kruskal-Wallis test based on the relative abundance of species, combined with the LEfSe analysis showed that the dominant bacteria in males were Pseudomonas and Papillibacter, whereas the dominant bacteria in women were Fusobacteriales and Tannerella. KEGG analysis predicted that the variation in the oral microbiome may be related to the immune system in women, whereas immune system diseases were the dominant pathway in men. Conclusion. We found sex-specific differences in the oral microbiome in a sample of youths with severe periodontitis. The differences may be related to changes in immune homeostasis and lead to a better understanding of periodontitis.


2021 ◽  
Vol 43 (3) ◽  
pp. 1460-1472
Author(s):  
Vivianne Cruz de Jesus ◽  
Manu Singh ◽  
Robert J. Schroth ◽  
Prashen Chelikani ◽  
Carol A. Hitchon

The association of taste genetics and the oral microbiome in autoimmune diseases such as rheumatoid arthritis (RA) has not been reported. We explored a novel oral mucosal innate immune pathway involving the bitter taste G protein-coupled receptor T2R38. This case–control study aimed to evaluate whether T2R38 polymorphisms associate with the buccal microbial composition in RA. Genomic DNA was obtained from buccal swabs of 35 RA patients and 64 non-RA controls. TAS2R38 genotypes were determined by Sanger sequencing. The buccal microbiome was assessed by Illumina MiSeq sequencing of the V4-16S rRNA gene. Bacterial community differences were analyzed with alpha and beta diversity measures. Linear discriminant analysis effect size identified taxa discriminating between RA versus non-RA and across TAS2R38 genotypes. TAS2R38 genotype frequency was similar between RA and non-RA controls (PAV/PAV; PAV/AVI; AVI/AVI: RA 42.9%; 45.7%; 11.4% versus controls 32.8%; 48.4%; 18.8%, chi-square (2, N = 99) = 2.1, p = 0.35). The relative abundance of Porphyromonas, among others, differed between RA and non-RA controls. The relative abundance of several bacterial species also differed across TAS2R38 genotypes. These findings suggest an association between T2R38 polymorphisms and RA buccal microbial composition. However, further research is needed to understand the impact of T2R38 in oral health and RA development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ke Yang ◽  
Yuezhu Wang ◽  
Shizhou Zhang ◽  
Dongsheng Zhang ◽  
Lihua Hu ◽  
...  

Oral microbiota dysbiosis is associated with the occurrence and progression of oral cancer. To investigate the association between the microbiota and risk of oral squamous cell carcinoma (OSCC), we identified the microbial composition of paired tumor (TT)/normal paracancerous tissues (NPT) and saliva (TS) samples in OSCC patients through 16S rRNA gene sequencing. A total of 22 phyla, 321 genera, and 869 species were identified in the oral samples. Paired comparisons revealed significant differences between TT, NPT, and TS groups, with the genus Filifactor significantly enriched in TT. The phylum Actinobacteria; genus Veillonella; and species Granulicatella adiacens, Streptococcus sanguinis, and Veillonella rogosae were significantly enriched in NPT, while the phylum Bacteroidetes; genera Capnocytophaga, Haemophilus, and Prevotella; and seven species, including Capnocytophaga sp., Haemophilus sp., and Neisseria sp., were significantly enriched in TS. In TTs, the abundance of Prevotella intermedia was profoundly higher in the gingiva, while Capnocytophaga gingivalis and Rothia mucilaginosa were enriched in the lining mucosa and tongue. Increasing in abundance from the early tumor stage to the late stage, Solobacterium moorei in TT and Campylobacter sp. strain HMT 044 in TS were positively correlated with OSCC development, suggesting that bacteria were selected by different microenvironments. The correlation between 11 microbial species and 17 pathway abundances was revealed, indicating the potential function of low-abundance bacteria. Overall, our analysis revealed that multiple oral bacterial taxa are associated with a subsequent risk of OSCC and may be used as biomarkers for risk prediction and intervention in oral cancers.


Author(s):  
Fei Li ◽  
Ding Fu ◽  
Danying Tao ◽  
Xiping Feng ◽  
May Chun Mei Wong ◽  
...  

AimTo provide a dynamic description of the oral microbial composition in mothers with and without dental caries and their children aging 12-24 months.MethodologyA total of 20 pairs of mothers and their children aged 12 months were included and followed up at 18 and 24 months of age. Ten mothers with dental caries(MEG) and their children(CEG) were in the exposure group, and ten caries-free mothers(MCG) and their children(CCG)in control group. Supragingival plaque biofilm samples were collected and DNA was extracted for bacterial 16S rRNA gene sequencing.ResultsA total of 18 pairs completed follow-ups. At a 3% divergence level, the number of common operational taxonomic units found between the mothers and children increased as the children aged. Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria accounted for more than 80% phyla of each group. A microbial community structure analysis showed that the differences between mothers and children were significant in all groups except for the MEG24 and CEG24 groups.ConclusionsOral microbiota of children was more like their mothers’ with increasing age, regardless of whether the mothers had dental caries. Mothers with dental caries may have a greater influence on the oral microbiota of children’s than those without dental caries as children age.


Sign in / Sign up

Export Citation Format

Share Document