scholarly journals Impact of Oropharyngeal Administration of Colostrum in Preterm Newborns’ Oral Microbiome

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4224
Author(s):  
Ramon V. Cortez ◽  
Andrea Fernandes ◽  
Luiz Gustavo Sparvoli ◽  
Marina Padilha ◽  
Rubens Feferbaum ◽  
...  

The initial colonization of the human microbiota is of paramount importance. In this context, the oropharyngeal administration of colostrum is a safe, viable, and well-tolerated practice even by the smallest preterm infants. Therefore, this study evaluated the effects of oropharyngeal administration of colostrum on the establishment of preterm infants’ oral microbiota. A longitudinal observational study was carried out with 20 premature neonates, divided into two groups: one receiving the protocol (Oropharyngeal Administration of Colostrum; OAC) and the other one receiving Standard Caare (SC). Saliva samples were collected from the newborns weekly during the study period (from the day of birth until the 21st day of life) for analysis of oral microbiota through 16S rRNA gene sequencing. We observed that the colonization of the oral microbiota of preterm newborns preseanted a higher relative abundance of Staphylococcus on the 7th day of life, mainly in the OAC group. Additionally, an increased abundance of Bifidobacterium and Bacteroides was observed in the OAC group at the first week of life. Regarding alpha and beta diversity, time was a key factor in the oral modulation of both groups, showing how dynamic this environment is in early life.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ying Qing ◽  
Lihua Xu ◽  
Gaoping Cui ◽  
Liya Sun ◽  
Xiaowen Hu ◽  
...  

AbstractSchizophrenia is a debilitating mental disorder and often has a prodromal period, referred to as clinical high risk (CHR) for psychosis, prior to the first episode. The etiology and pathogenesis of schizophrenia remain unclear. Despite the human gut microbiome being associated with schizophrenia, the role of the oral microbiome, which is a vital player in the mouth–body connection, is not well understood. To address this, we performed 16S rRNA gene sequencing to investigate the salivary microbiome in 85 patients with drug-naïve first-episode schizophrenia (FES), 43 individuals at CHR, and 80 healthy controls (HCs). The salivary microbiome of FES patients was characterized by higher α-diversity and lower β-diversity heterogeneity than those of CHR subjects and HCs. Proteobacteria, the predominant phylum, was depleted, while Firmicutes and the Firmicutes/Proteobacteria ratio was enriched, in a stepwise manner from HC to CHR to FES. H2S-producing bacteria exhibited disease-stage-specific enrichment and could be potential diagnostic biomarkers for FES and CHR. Certain salivary microbiota exhibited disease-specific correlation patterns with symptomatic severities, peripheral pro-inflammatory cytokines, thioredoxin, and S100B in FES. Furthermore, the metabolic functions from inferred metagenomes of the salivary microbiome were disrupted in FES, especially amino acid metabolism, carbohydrate metabolism, and xenobiotic degradation. This study has established a link between salivary microbiome alterations and disease initiation and provided the hypothesis of how the oral microbiota could influence schizophrenia.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shinya Kageyama ◽  
Mikari Asakawa ◽  
Toru Takeshita ◽  
Yukari Ihara ◽  
Shunsuke Kanno ◽  
...  

ABSTRACTNewborns are constantly exposed to various microbes from birth; hence, diverse commensal bacteria colonize the oral cavity. However, how or when these bacteria construct a complex and stable ecosystem remains unclear. This prospective cohort study examined the temporal changes in bacterial diversity and composition in tongue microbiota during infancy. We longitudinally collected a total of 464 tongue swab samples from 8 infants (age of <6 months at baseline) for approximately 2 years. We also collected samples from 32 children (aged 0 to 2 years) and 73 adults (aged 20 to 29 years) cross-sectionally as control groups. Bacterial diversities and compositions were determined by 16S rRNA gene sequencing. The tongue bacterial diversity in infancy, measured as the number of observed operational taxonomic units (OTUs), rapidly increased and nearly reached the same level as that in adults by around 80 weeks. The overall tongue bacterial composition in the transitional phase, 80 to 120 weeks, was more similar to that of adults than to that of the early exponential phase (EEP), 10 to 29 weeks, according to analysis of similarities. Dominant OTUs in the EEP corresponding toStreptococcus perorisandStreptococcus lactariusexponentially decreased immediately after EEP, around 30 to 49 weeks, whereas several OTUs corresponding toGranulicatella adiacens,Actinomyces odontolyticus, andFusobacterium periodonticumreciprocally increased during the same period. These results suggest that a drastic compositional shift of tongue microbiota occurs before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years.IMPORTANCEEvaluating the development of oral microbiota during infancy is important for understanding the subsequent colonization of bacterial species and the process of formation of mature microbiota in the oral cavity. We examined tongue microbiota longitudinally collected from 8 infants and found that drastic compositional shifts in tongue microbiota occur before the age of 1 year, and then bacterial diversity and overall bacterial composition reach levels comparable to those in adults by the age of 2 years. These results may be helpful for preventing the development of various diseases associated with oral microbiota throughout life.


Author(s):  
Rajani Sapkota ◽  
Cindy H. Nakatsu ◽  
Michael E. Scharf

Termites are eusocial insects that host a range of prokaryotic and eukaryotic gut symbionts and can differentiate into a range of caste phenotypes. Soldier caste differentiation from termite workers follows two successive molts (worker-presoldier-soldier) that are driven at the endocrine level by juvenile hormone (JH). While physiological and eusocial mechanisms tied to JH signaling have been studied, the role of gut symbionts in the caste differentiation process is poorly understood. Here, we used the JH analog-methoprene in combination with the antibiotic kanamycin to manipulate caste differentiation and gut bacterial loads in Reticulitermes flavipes termites via four bioassay treatments: kanamycin, methoprene, kanamycin+methoprene, and an untreated (negative) control. Bioassay results demonstrated a significantly higher number of presoldiers in the methoprene, highest mortality in kanamycin+methoprene, and significantly reduced protist numbers in all treatments except the untreated control. Bacterial 16S rRNA gene sequencing provided alpha and beta diversity results that mirrored bioassay findings. From ANCOM analysis, we found that several bacterial genera were differentially abundant among treatments. Finally, follow-up experiments showed that if methoprene and kanamycin or untreated termites are placed together, zero or rescued presoldier initiation (respectively) occurs. These findings reveal that endogenous JH selects for symbiont compositions required to successfully complete presoldier differentiation. However, if the gut is voided before the influx of JH, it cannot select for the necessary symbionts that are crucial for molting. Based on these results we are able to provide a novel example of linkages between gut microbial communities and host phenotypic plasticity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Almeida-Santos ◽  
Daniela Martins-Mendes ◽  
Magdalena Gayà-Vidal ◽  
Lucía Pérez-Pardal ◽  
Albano Beja-Pereira

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that is becoming a significant global health care problem. Several studies have shown that people with diabetes are more susceptible to oral problems, such as periodontitis and, although the causes are still inconclusive, oral microbiota is considered to play a major role in oral health. This study aimed to characterize the oral microbiome of a sample representing T2DM patients from Portugal and exploit potential associations between some microorganisms and variables like teeth brushing, smoking habits, average blood sugar levels, medication and nutrient intake. By sequencing the hypervariable regions V3-V4 of the 16S rRNA gene in 50 individuals belonging to a group of diabetes patients and a control group, we found a total of 232 taxa, from which only 65% were shared between both groups. No differences were found in terms of alpha and beta diversity between categories. We did not find significant differences in the oral microbiome profiles of control and diabetes patients. Only the class Synergistia and the genus TG5, which are related to periodontitis, were statistically more frequent in the control group. The similar microbiome profiles of medicated diabetics and the control group indicates that the relationship between the T2DM and the oral microbiome might be more related to either the lifestyle/diet rather than diabetes per se. Moreover, this study provides, for the first time, insights into the oral microbiome of a population with a high prevalence of diabetes.


Author(s):  
Yi-Jing Jia ◽  
Ying Liao ◽  
Yong-Qiao He ◽  
Mei-Qi Zheng ◽  
Xia-Ting Tong ◽  
...  

The oral microbiota has been observed to be influenced by cigarette smoking and linked to several human diseases. However, research on the effect of cigarette smoking on the oral microbiota has not been systematically conducted in the Chinese population. We profiled the oral microbiota of 316 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The alpha diversity of oral microbiota was different between never smokers and smokers (P = 0.002). Several bacterial taxa were first reported to be associated with cigarette smoking by LEfSe analysis, including Moryella (q = 1.56E-04), Bulleidia (q = 1.65E-06), and Moraxella (q = 3.52E-02) at the genus level and Rothia dentocariosa (q = 1.55E-02), Prevotella melaninogenica (q = 8.48E-08), Prevotella pallens (q = 4.13E-03), Bulleidia moorei (q = 1.79E-06), Rothia aeria (q = 3.83E-06), Actinobacillus parahaemolyticus (q = 2.28E-04), and Haemophilus parainfluenzae (q = 4.82E-02) at the species level. Two nitrite-producing bacteria that can increase the acidity of the oral cavity, Actinomyces and Veillonella, were also enriched in smokers with FDR-adjusted q-values of 3.62E-06 and 1.10E-06, respectively. Notably, we observed that two acid production-related pathways, amino acid-related enzymes (q = 6.19E-05) and amino sugar and nucleotide sugar metabolism (q = 2.63E-06), were increased in smokers by PICRUSt analysis. Finally, the co-occurrence analysis demonstrated that smoker-enriched bacteria were significantly positively associated with each other and were negatively correlated with the bacteria decreased in smokers. Our results suggested that cigarette smoking may affect oral health by creating a different environment by altering bacterial abundance, connections among oral microbiota, and the microbiota and their metabolic function.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9235
Author(s):  
David A. Coil ◽  
Russell Y. Neches ◽  
Jenna M. Lang ◽  
Guillaume Jospin ◽  
Wendy E. Brown ◽  
...  

Background Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. Findings We report here a large-scale study of the microbiome found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiome, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiome of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. Conclusions We place this data in the context of previous studies and demonstrate that the microbiome of phones and shoes are different. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.


2020 ◽  
Author(s):  
Esam Halboub ◽  
Mohammed Alakhali ◽  
Abdulwahhab H. Al-Amir ◽  
Husham E. Homeida ◽  
Divyashri Baraniya ◽  
...  

Abstract Background The possibility that smokeless tobacco may contribute to oral carcinogenesis by influencing the oral microbiome has not been explored. This cross sectional study sought to assess the effect of using shammah, a form of smokeless tobacco prevalent in Arabia, on the tongue microbiome. Tongue scarping samples were obtained from twenty-nine shammah users (SU; 27.34±6.9 years) and 23 shammah non-users (SNU; 27.7±7.19 years) and analyzed with 16S rRNA gene sequencing (V1-V3). Species-level taxonomy assignment of the high-quality, merged reads was obtained using a previously described BLASTn-based algorithm. Downstream analyses were performed with QIIME, LEfSe, and R. Results A total of 178 species, belonging to 62 genera and 8 phyla were identified. Genera Streptococcus , Leptotrichia , Actinomyces , Veillonella , Haemophilus , Prevotella and Neisseria accounted for more than 60% of the average microbiome. There were no differences between the two groups in species richness and alpha-diversity, but PCoA showed significant separation (P=0.015, ANOSIM). LEfSe analysis identified 22 species to be differentially abundant between the SU and SNU. However, only 7 species maintained a false discovery rate of ≤ 0.2 and could cluster the two groups separately: Rothia mucilaginosa , Streptococcus sp. oral taxon 66, Actinomyces meyeri , Streptococcus vestibularis Streptococcus sanguinis and a potentially novel Veillonella species in association with SU, and Oribacterium asaccharolyticum with SNU. Conclusion Shammah use induces tongue microbiome changes that may be relevant to oral carcinogenesis, namely enrichment of species with high acetaldehyde production potential, which warrants further investigation.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2245
Author(s):  
Yiping Zhu ◽  
Wuyan Jiang ◽  
Reed Holyoak ◽  
Bo Liu ◽  
Jing Li

The objective of this study was to investigate the oral microbial composition of the donkey and whether basic dental treatment, such as dental floating, would make a difference to the oral microbial environment in donkeys with dental diseases using high-throughput bacterial 16S rRNA gene sequencing. Oral swab samples were collected from 14 donkeys with various dental abnormalities on day 0 (before treatment) and day 20 (twenty days after treatment). It is the first report focusing on the oral microbiome in donkeys with dental diseases and the impact of common dental procedures thereon. Identified in group Day 0 and group Day 20, respectively, were 60,439.6 and 58,579.1 operational taxonomic units (OTUs). Several taxa in Day 0 differed significantly from Day 20 at the phylum and genus levels, but no statistically significant difference was observed in richness and diversity of Day 0 and Day 20. The results also indicated that a larger-scale study focusing on healthy donkey oral microbiome, as well as the correlation of dental diseases and oral microbiomes at different time frames following more specific and consistent dental treatment, are warranted.


2020 ◽  
Vol 61 (4) ◽  
pp. 593-605
Author(s):  
Filippo Cendron ◽  
Giovanni Niero ◽  
Gabriele Carlino ◽  
Mauro Penasa ◽  
Martino Cassandro

AbstractThe aim of this study was to describe the fecal bacteria and archaea composition of Holstein-Friesian and Simmental heifers and lactating cows, using 16S rRNA gene sequencing. Bacteria and archaea communities were characterized and compared between heifers and cows of the same breed. Two breeds from different farms were considered, just to speculate about the conservation of the microbiome differences between cows and heifers that undergo different management conditions. The two breeds were from two different herds. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most abundant phyla in all experimental groups. Alpha- and beta-diversity metrics showed significant differences between heifers and cows within the same breed, supported by principal coordinate analysis. The analysis of Holstein-Friesian fecal microbiome composition revealed 3 different bacteria families, 2 genera, and 2 species that differed between heifers and cows; on the other hand, Simmental heifers and cows differed only for one bacteria family, one archaeal genus, and one bacteria species. Results of the present study suggest that fecal communities of heifers and cows are different, and that fecal microbiome is maintained across experimental groups.


2019 ◽  
Vol 7 (12) ◽  
pp. 610
Author(s):  
Sandi L. Navarro ◽  
Lisa Levy ◽  
Keith R. Curtis ◽  
Johanna W. Lampe ◽  
Meredith A.J. Hullar

Glucosamine and chondroitin (G&C), typically taken for joint pain, are among the most frequently used specialty supplements by US adults. More recently, G&C have been associated with lower incidence of colorectal cancer in human observational studies and reduced severity of experimentally-induced ulcerative colitis in rodents. However, little is known about their effects on colon-related physiology. G&C are poorly absorbed and therefore metabolized by gut microbiota. G&C have been associated with changes in microbial structure, which may alter host response. We conducted a randomized, double-blind, placebo-controlled crossover trial in ten healthy adults to evaluate the effects of a common dose of G&C compared to placebo for 14 days on gut microbial community structure, measured by 16S rRNA gene sequencing. Linear mixed models were used to evaluate the effect of G&C compared to placebo on fecal microbial alpha and beta diversity, seven phyla, and 137 genera. Nine genera were significantly different between interventions (False Discovery Rate < 0.05). Abundances of four Lachnospiraceae genera, two Prevotellaceae genera, and Desulfovibrio were increased after G&C compared to placebo, while Bifidobacterium and a member of the Christensenellaceae family were decreased. Our results suggest that G&C affect the composition of the gut microbiome which may have implications for therapeutic efficacy.


Sign in / Sign up

Export Citation Format

Share Document