scholarly journals Fusion Analysis of Economic Data of the Medical and Health Industry Based on Blockchain Technology and Two-Way Spectral Cluster Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Runhua Liu ◽  
Chengcheng Zhang ◽  
Tenglong Feng

Due to the huge potential in gene expression analysis, which is helpful for disease diagnosis, new drug development, and life science research, the two-way clustering algorithm was proposed and it was widely used in gene expression data research. In order to understand the economic data of medical and health industry, this paper analyzes the economic data of the medical and health industry in different regions of China based on blockchain technology and two-way spectral cluster analysis and makes statistics on the economic data of the medical and health industry in eastern, central, and western regions of China. This paper studies the development status of China’s medical and health industry and the factors affecting the agglomeration of medical and health service industry and analyzes them under the blockchain technology and two-way spectral cluster analysis method. The results show that the overall development trend of China’s medicine and health is from government-led to government, society, and individual sharing. After the transformation of blockchain technology and two-way spectral cluster analysis, the output value of the pharmaceutical industry increased by about 10%.

2021 ◽  
Vol 13 (14) ◽  
pp. 7585
Author(s):  
Yunmei Liu ◽  
Shuai Zhang ◽  
Min Chen ◽  
Yenchun Wu ◽  
Zhengxian Chen

Blockchain technology is the most cutting-edge technology in the field of financial technology, which has attracted extensive attention from governments, financial institutions and investors of various countries. Blockchain and finance, as an interdisciplinary, cross-technology and cross-field topic, has certain limitations in both theory and application. Based on the bibliometrics data of Web of Science, this paper conducts data mining on 759 papers related to blockchain technology in the financial field by means of co-word analysis, bi-clustering algorithm and strategic coordinate analysis, so as to explore hot topics in this field and predict the future development trend. The experimental results found ten research topics in the field of blockchain combined with finance, including blockchain crowdfunding, Fintech, encryption currency, consensus mechanism, the Internet of Things, digital financial, medical insurance, supply chain finance, intelligent contract and financial innovation. Among them, blockchain crowdfunding, Fintech, encryption currency and supply chain finance are the key research directions in this research field. Finally, this paper also analyzes the opportunities and risks of blockchain development in the financial field and puts forward targeted suggestions for the government and financial institutions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Babajan Banaganapalli ◽  
Haifa Mansour ◽  
Arif Mohammed ◽  
Arwa Mastoor Alharthi ◽  
Nada Mohammed Aljuaid ◽  
...  

Abstract Celiac disease (CeD) is a gastrointestinal autoimmune disorder, whose specific molecular basis is not yet fully interpreted. Therefore, in this study, we compared the global gene expression profile of duodenum tissues from CeD patients, both at the time of disease diagnosis and after two years of the gluten-free diet. A series of advanced systems biology approaches like differential gene expression, protein–protein interactions, gene network-cluster analysis were deployed to annotate the candidate pathways relevant to CeD pathogenesis. The duodenum tissues from CeD patients revealed the differential expression of 106 up- and 193 down-regulated genes. The pathway enrichment of differentially expressed genes (DEGs) highlights the involvement of biological pathways related to loss of cell division regulation (cell cycle, p53 signalling pathway), immune system processes (NOD-like receptor signalling pathway, Th1, and Th2 cell differentiation, IL-17 signalling pathway) and impaired metabolism and absorption (mineral and vitamin absorptions and drug metabolism) in celiac disease. The molecular dysfunctions of these 3 biological events tend to increase the number of intraepithelial lymphocytes (IELs) and villous atrophy of the duodenal mucosa promoting the development of CeD. For the first time, this study highlights the involvement of aberrant cell division, immune system, absorption, and metabolism pathways in CeD pathophysiology and presents potential novel therapeutic opportunities.


2005 ◽  
Vol 03 (04) ◽  
pp. 821-836 ◽  
Author(s):  
FANG-XIANG WU ◽  
W. J. ZHANG ◽  
ANTHONY J. KUSALIK

Microarray technology has produced a huge body of time-course gene expression data. Such gene expression data has proved useful in genomic disease diagnosis and genomic drug design. The challenge is how to uncover useful information in such data. Cluster analysis has played an important role in analyzing gene expression data. Many distance/correlation- and static model-based clustering techniques have been applied to time-course expression data. However, these techniques are unable to account for the dynamics of such data. It is the dynamics that characterize the data and that should be considered in cluster analysis so as to obtain high quality clustering. This paper proposes a dynamic model-based clustering method for time-course gene expression data. The proposed method regards a time-course gene expression dataset as a set of time series, generated by a number of stochastic processes. Each stochastic process defines a cluster and is described by an autoregressive model. A relocation-iteration algorithm is proposed to identity the model parameters and posterior probabilities are employed to assign each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure the quality of clustering. Computational experiments are performed on a synthetic and three real time-course gene expression datasets to investigate the proposed method. The results show that our method allows the better quality clustering than other clustering methods (e.g. k-means) for time-course gene expression data, and thus it is a useful and powerful tool for analyzing time-course gene expression data.


2014 ◽  
Vol 5 (3) ◽  
pp. 1-21 ◽  
Author(s):  
P. K. Nizar Banu ◽  
S. Andrews

Enormous quantity of gene expression data from diverse data sources are accumulated due to the modern advancement in microarray technology that leads to major computational challenges. The foremost step towards addressing this challenge is to cluster genes which reveal hidden gene expression patterns and natural structures to find the interesting patterns from the underlying data that in turn helps in disease diagnosis and drug development. Particle Swarm Optimization (PSO) technique is extensively used for many practical applications but fails in finding the initial seeds to generate clusters and thus reduces the clustering accuracy. One of the meta-heuristic optimization algorithms called Harmony Search is free from divergence and helps to find out the near-global optimal solutions by searching the entire solution space. This paper proposes a novel Harmony Search Particle Swarm Optimization (HSPSO) clustering algorithm and is applied for Brain Tumor, Colon Cancer, Leukemia Cancer and Lung Cancer gene expression datasets for clustering. Experimental results show that the proposed algorithm produces clusters with better compactness and accuracy, in comparison with K-means clustering, PSO clustering (swarm clustering) and Fuzzy PSO clustering.


2015 ◽  
pp. 125-138 ◽  
Author(s):  
I. V. Goncharenko

In this article we proposed a new method of non-hierarchical cluster analysis using k-nearest-neighbor graph and discussed it with respect to vegetation classification. The method of k-nearest neighbor (k-NN) classification was originally developed in 1951 (Fix, Hodges, 1951). Later a term “k-NN graph” and a few algorithms of k-NN clustering appeared (Cover, Hart, 1967; Brito et al., 1997). In biology k-NN is used in analysis of protein structures and genome sequences. Most of k-NN clustering algorithms build «excessive» graph firstly, so called hypergraph, and then truncate it to subgraphs, just partitioning and coarsening hypergraph. We developed other strategy, the “upward” clustering in forming (assembling consequentially) one cluster after the other. Until today graph-based cluster analysis has not been considered concerning classification of vegetation datasets.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rowan AlEjielat ◽  
Anas Khaleel ◽  
Amneh H. Tarkhan

Abstract Background Ankylosing spondylitis (AS) is a rare inflammatory disorder affecting the spinal joints. Although we know some of the genetic factors that are associated with the disease, the molecular basis of this illness has not yet been fully elucidated, and the genes involved in AS pathogenesis have not been entirely identified. The current study aimed at constructing a gene network that may serve as an AS gene signature and biomarker, both of which will help in disease diagnosis and the identification of therapeutic targets. Previously published gene expression profiles of 16 AS patients and 16 gender- and age-matched controls that were profiled on the Illumina HumanHT-12 V3.0 Expression BeadChip platform were mined. Patients were Portuguese, 21 to 64 years old, were diagnosed based on the modified New York criteria, and had Bath Ankylosing Spondylitis Disease Activity Index scores > 4 and Bath Ankylosing Spondylitis Functional Index scores > 4. All patients were receiving only NSAIDs and/or sulphasalazine. Functional enrichment and pathway analysis were performed to create an interaction network of differentially expressed genes. Results ITM2A, ICOS, VSIG10L, CD59, TRAC, and CTLA-4 were among the significantly differentially expressed genes in AS, but the most significantly downregulated genes were the HLA-DRB6, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-DQB1, ITM2A, and CTLA-4 genes. The genes in this study were mostly associated with the regulation of the immune system processes, parts of cell membrane, and signaling related to T cell receptor and antigen receptor, in addition to some overlaps related to the IL2 STAT signaling, as well as the androgen response. The most significantly over-represented pathways in the data set were associated with the “RUNX1 and FOXP3 which control the development of regulatory T lymphocytes (Tregs)” and the “GABA receptor activation” pathways. Conclusions Comprehensive gene analysis of differentially expressed genes in AS reveals a significant gene network that is involved in a multitude of important immune and inflammatory pathways. These pathways and networks might serve as biomarkers for AS and can potentially help in diagnosing the disease and identifying future targets for treatment.


Database ◽  
2021 ◽  
Vol 2021 ◽  
Author(s):  
Shaikh Farhad Hossain ◽  
Ming Huang ◽  
Naoaki Ono ◽  
Aki Morita ◽  
Shigehiko Kanaya ◽  
...  

Abstract A biomarker is a measurable indicator of a disease or abnormal state of a body that plays an important role in disease diagnosis, prognosis and treatment. The biomarker has become a significant topic due to its versatile usage in the medical field and in rapid detection of the presence or severity of some diseases. The volume of biomarker data is rapidly increasing and the identified data are scattered. To provide comprehensive information, the explosively growing data need to be recorded in a single platform. There is no open-source freely available comprehensive online biomarker database. To fulfill this purpose, we have developed a human biomarker database as part of the KNApSAcK family databases which contain a vast quantity of information on the relationships between biomarkers and diseases. We have classified the diseases into 18 disease classes, mostly according to the National Center for Biotechnology Information definitions. Apart from this database development, we also have performed disease classification by separately using protein and metabolite biomarkers based on the network clustering algorithm DPClusO and hierarchical clustering. Finally, we reached a conclusion about the relationships among the disease classes. The human biomarker database can be accessed online and the inter-disease relationships may be helpful in understanding the molecular mechanisms of diseases. To our knowledge, this is one of the first approaches to classify diseases based on biomarkers. Database URL:  http://www.knapsackfamily.com/Biomarker/top.php


Sign in / Sign up

Export Citation Format

Share Document