scholarly journals Elucidating the Mechanism of Action of Salvia miltiorrhiza for the Treatment of Acute Pancreatitis Based on Network Pharmacology and Molecular Docking Technology

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Kunyao Zhu ◽  
Man Zhang ◽  
Jia Long ◽  
Shuqi Zhang ◽  
Huali Luo

Using network pharmacology and molecular docking, this study investigated the molecular mechanisms by which the active components in Salvia miltiorrhiza can alleviate acute pancreatitis. Initially, the active components of Salvia miltiorrhiza and the targets collected from the GeneCards database were screened based on the platform of systematic pharmacology analysis of traditional Chinese medicine. Subsequently, the active components were intersected with the disease targets. Also, interactions among the targets were computed using the STRING database. Biological function and pathway enrichment were analyzed using the Cluster Profiler package in the R software. Protein-protein interaction and component target pathway network were constructed using the Cytoscape software. Ultimately, the key targets and their corresponding components in the network were verified using the AutoDock Vina software. The results showed Salvia miltiorrhiza had 111 targets for acute pancreatitis. The biological process (BP) analysis showed that the active components of Salvia miltiorrhiza induced a drug response, positive regulation of transcription by RNA polymerase II promoter, signal transduction, positive regulation of cell proliferation, and negative regulation of apoptosis. Furthermore, the KEGG enrichment analysis screened 118 ( P < 0.05 ) signaling pathways, such as the pathways related to cancer, neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, and cAMP signaling pathway, to name a few. Finally, molecular docking showed that the active components of Salvia miltiorrhiza had a good binding affinity with their corresponding target proteins. Through network pharmacology, this study predicted the potential pharmacodynamic material basis and the mechanisms by which Salvia miltiorrhiza can treat acute pancreatitis. Moreover, this study provided a scientific basis for mining the pharmacodynamic components of Salvia miltiorrhiza and expanding the scope of its clinical use.

2021 ◽  
Author(s):  
Yongchang Guo ◽  
Dapeng Zhang ◽  
Yuju Cao ◽  
Xiaoyan Feng ◽  
Caihong Shen ◽  
...  

Abstract Ethnopharmacological relevanceOsteonecrosis of the femoral head (ONFH) is still a challenge for orthopedists worldwide, which may lead to disability in patients without effective treatment. A newly developed formula of Chinese medicine, Danyu Gukang Pills (DGP), was recognized to be effective for ONFH. Nevertheless, its molecular mechanisms remain to be clarified. MethodsNetwork pharmacology was adopted to detect the mechanism of DGP on ONFH. The compounds of DGP were collected from the online databases, and active components were selected based on their OB and DL index. The potential proteins of DGP were acquired from TCMSP database, while the potential genes of ONFH were obtained from Gene Cards and Pubmed Gene databases. The function of Gene and potential pathways were researched by GO and KEGG pathway enrichment analysis. The compounds-targets and targets-pathways network were constructed in an R and Cytosacpe software. The mechanism was further investigated via molecular docking. Finally, in-vitro experiments were validated in the BMSCs. ResultsA total of 2305 compounds in DGP were gained, among which, 370 were selected as active components for which conforming to criteria. Combined the network analysis, molecular docking and in-vitro experiments, the results firstly demonstrated that the treatment effect of DGP on ONFH may be closely related to HIF-1α, VEGFA and HIF-1 signaling pathway. ConclusionThe current study firstly researched the molecular mechanism of DGP on ONFH based on network pharmacology. The results indicated that DGP may exert the effect on ONFH targeting on HIF-1α and VEGFA via HIF-1 signaling pathway.


2021 ◽  
Author(s):  
yanni yang ◽  
yirixiati aihaiti ◽  
peng xu ◽  
haishi zheng

Abstract Purpose:To explore the potential target proteins underlying the effect of Angelicae Pubescentis Radix(APR) on rheumatoid arthritis (RA) using a network pharmacology and molecular docking approach .Methods:First, the active components and target proteins of APR and RA related disease targets were obtained from the TCMSP, Gene Card,OMIM,DisGeNET and STRING databases. Then the active ingredient target in the RA network diagram was drawn using Cytoscape 3.7.1 software. Protein-protein interaction analysis, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analyses were carried out using the STRING and David databases. The crystal structures of RA related targets were retrieved from the RCSB PDB database. Finally, the potential active compounds and their related targets were validated using molecular docking technology.Results: Five active components of Angelicae Pubescentis Radix(APR) were screened out, including ammidin, isoimperatorin, beta-sitosterol, O-acetylcolumbianetin and angelicone and 80 key targets including MAPK8,EGFR,PTGS2,CASPASE3,MTOR,SRC,KDR,MAPK1,NOS3 and MAPK14, etc were obtained. GO enrichment analysis showed that 222 biological processes, 34 cell components and 72 molecular functions were identified; KEGG analysis showed that the targets of APR in the treatment of RA were significantly enriched in pathways in cancer, the PI3K−Akt signaling pathway, Proteoglycans in cancer, osteoclast differentiation, neuroactive ligand−receptor interaction, tuberculosis,TNF signaling pathway, serotonergic synapse, Rap1 signaling pathway,cAMP signaling pathway. The results of molecular docking showed that ammidin, isoimperatorin, beta-sitosterol, O-acetylcolumbianetin and angelicone had strong affinity for PTGS2, EGFR and MAPK8.Conclusion: APR treats RA through the characteristics of multi-component, multi-target and multi-pathway regulation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Wu ◽  
Xinqiao Liu ◽  
Guiwei Li

AbstractHuangqin decoction (HQD) is a Traditional Chinese Medicine formula for ulcerative colitis. However, the pharmacology and molecular mechanism of HQD on ulcerative colitis is still unclear. Combined microarray analysis, network pharmacology, and molecular docking for revealing the therapeutic targets and molecular mechanism of HQD against ulcerative colitis. TCMSP, DrugBank, Swiss Target Prediction were utilized to search the active components and effective targets of HQD. Ulcerative colitis effective targets were obtained by microarray data from the GEO database (GSE107499). Co-targets between HQD and ulcerative colitis are obtained by Draw Venn Diagram. PPI (Protein–protein interaction) network was constructed by the STRING database. To obtain the core target, topological analysis is exploited by Cytoscape 3.7.2. GO and KEGG enrichment pathway analysis was performed to Metascape platform, and molecular docking through Autodock Vina 1.1.2 finished. 161 active components with 486 effective targets of HQD were screened. 1542 ulcerative colitis effective targets were obtained with |Log2FC|> 1 and adjusted P-value < 0.05. The Venn analysis was contained 79 co-targets. Enrichment analysis showed that HQD played a role in TNF signaling pathway, IL-17 signaling pathway, Th17 cell differentiation, etc. IL6, TNF, IL1B, PTGS2, ESR1, and PPARG with the highest degree from PPI network were successfully docked with 19 core components of HQD, respectively. According to ZINC15 database, quercetin (ZINC4175638), baicalein (ZINC3871633), and wogonin (ZINC899093) recognized as key compounds of HQD on ulcerative colitis. PTGS2, ESR1, and PPARG are potential therapeutic targets of HQD. HQD can act on multiple targets through multi-pathway, to carry out its therapeutic role in ulcerative colitis.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yanan Shi ◽  
Mingqi Chen ◽  
Zehua Zhao ◽  
Juhua Pan ◽  
Shijing Huang

Objective. We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. Methods. A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson–Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. Results. Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. Conclusions. The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


2021 ◽  
Author(s):  
Xuedong An ◽  
LiYun Duan ◽  
YueHong Zhang ◽  
De Jin ◽  
Shenghui Zhao ◽  
...  

Abstract BackgroundOur previous randomized, double-blind, placebo-controlled, multi-center clinical study showed that Compound Danshen Dripping Pills (CDDP) had a significant and safe effect in the treatment of diabetic retinopathy (DR), but its mechanism is still unclear, which we would explain based on network pharmacology and molecular docking.MethodThe active ingredients of CDDP (composed of Panax notoginseng, Salvia miltiorrhiza Bge., and Borneol) were searched in the TCMSP database. The validated target and Smiles number of the active ingredient are queried through the PubChem database, and the predicted target of the active ingredient is obtained through the Swisstarget Prediction database. The Drugbank, TTD, and DisGeNET databases were retrieved to obtain the related targets of DR. The core targets were obtained by the cluster analysis function of Cytoscape, and then the Protein-Protein Interaction was performed. The GO and KEGG signal pathways were enriched and clustered in David database. The potential active components and targets were docking with Autodock Vina, and the results were visualized by PyMOL.Result51 active components and 922 validation and prediction targets of CDDP, 715 targets of DR and 154 co-targets were obtained. Cluster analysis showed that there were two clusters, a total of 64 targets. Go and KEGG signal pathway enrichment analysis showed that the top 20 mainly included TNF and HIF-1 signaling pathway. In GO analysis, BP mainly includes positive regulation of smooth muscle cell proliferation and response to hypoxia, CC mainly includes extracellular space and extracellular domain, MF mainly includes protein binding and protein binding recognition. In KEGG database, the key genes in the TNF signaling pathway were TNF, NFkB and VEGF, in HIF-1 signaling pathway were the IL-6, STAT3, HIF1A and VEGF. Molecular docking results showed that all components of CDDP had a certain docking ability with TNF, NFkB, VEGF, IL-6, STAT3 and HIF1A, which of Asiatic acid and Salvianolic acid j was the strongest.Conclusion Based on the network pharmacology and molecular docking, the core active components of CDDP, mainly including Asiatic acid and Salvianolic acid j, which may play a role in regulating cell proliferation and response to inflammation and hypoxia by regulating the binding and recognition of intracellular and extracellular proteins, that is, mainly through TNF signaling pathway and HIF-1 signaling pathway.


Author(s):  
Feng Xu ◽  
Xiangpei Wang ◽  
Xiujuan Wei ◽  
Teng Chen ◽  
Hongmei Wu

Background: Musa basjoo pseudostem juice (MBSJ) is a well-known Chinese medicine, and Miao people use MBSJ to treat diabetes. In this work, the active ingredients and molecular mechanism of MBSJ against diabetes were explored. Methods: Anti-diabetic activity of MBSJ was evaluated using diabetic rats, and then the ingredients in the small-polar parts of MBSJ were analyzed by gas chromatography-mass spectrometer (GC-MS). Targets were obtained from several databases to develop the "ingredient-target-disease" network by Cytoscape. A collaborative analysis was carried out using the tools in Cytoscape and R packages, and molecular docking was also performed. Results: MBSJ improved the oral glucose tolerance and insulin tolerance, and reduced fasting blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, and low-density lipoprotein levels in the serum of diabetic rats. 13 potential compounds were identified by GC-MS for subsequent analysis, including Dibutyl phthalate, Oleamide, Stigmasterol, Stigmast-4-en-3-one, etc. The anti-diabetic effect of MBSJ was related to multiple signaling pathways, including Neuroactive ligand-receptor interaction, Phospholipase D signaling pathway, Endocrine resistance, Rap1 signaling pathway, EGFR tyrosine kinase inhibitor resistance, etc. Molecular docking at least partially verified the screening results of network pharmacology. Conclusion: MBSJ had good anti-diabetic activity. The small-polar parts of MBSJ were rich in anti-diabetic active ingredients. Furthermore, the analysis results showed that the anti-diabetic effect of the small-polar parts of MBSJ may be the result of multiple components, multiple targets, and multiple pathways. The current research results can provide important support for studying the active ingredients and exploring the underlying mechanism of MBSJ against diabetes.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Rui-sheng Zhou ◽  
Xiong-Wen Wang ◽  
Qin-feng Sun ◽  
Zeng Jie Ye ◽  
Jian-wei Liu ◽  
...  

Hepatocellular carcinoma (HCC) is a primary cause of cancer-related death in the world. Despite the fact that there are many methods to treat HCC, the 5-year survival rate of HCC is still at a low level. Emodin can inhibit the growth of HCC cells invitroand invivo. However, the gene regulation of emodin in HCC has not been well studied. In our research, RNA sequencing technology was used to identify the differentially expressed genes (DEGs) in HepG2 cells induced by emodin. A total of 859 DEGs were identified, including 712 downregulated genes and 147 upregulated genes in HepG2 cells treated with emodin. We used DAVID for function and pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed using STRING, and Cytoscape was used for module analysis. The enriched functions and pathways of the DEGs include positive regulation of apoptotic process, structural molecule activity and lipopolysaccharide binding, protein digestion and absorption, ECM-receptor interaction, complement and coagulation cascades, and MAPK signaling pathway. 25 hub genes were identified and pathway analysis revealed that these genes were mainly enriched in neuropeptide signaling pathway, inflammatory response, and positive regulation of cytosolic calcium ion concentration. Survival analysis showed that LPAR6, C5, SSTR5, GPR68, and P2RY4 may be involved in the molecular mechanisms of emodin therapy for HCC. A quantitative real-time PCR (qRT-PCR) assay showed that the mRNA levels of LPAR6, C5, SSTR5, GPR68, and P2RY4 were significantly decreased in HepG2 cells treated with emodin. In conclusion, the identified DEGs and hub genes in the present study provide new clues for further researches on the molecular mechanisms of emodin.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi Kuan Du ◽  
Yue Xiao ◽  
Shao Min Zhong ◽  
Yi Xing Huang ◽  
Qian Wen Chen ◽  
...  

Alzheimer’s disease is a common neurodegenerative disease in the elderly. This study explored the curative effect and possible mechanism of Acori graminei rhizoma on Alzheimer’s disease. In this paper, 8 active components of Acori graminei rhizoma were collected by consulting literature and using the TCMSP database, and 272 targets were screened using the PubChem and Swiss Target Prediction databases. Introduce it into the software of Cytoscape 3.7.2 and establish the graph of “drug-active ingredient-ingredient target.” A total of 276 AD targets were obtained from OMIM, Gene Cards, and DisGeNET databases. Import the intersection targets of drugs and diseases into STRING database for enrichment analysis, and build PPI network in the Cytoscape 3.7.2 software, whose core targets involve APP, AMPK, NOS3, etc. GO analysis and KEGG analysis showed that there were 195 GO items and 30 AD-related pathways, including Alzheimer’s disease pathway, serotonin synapse, estrogen signaling pathway, dopaminergic synapse, and PI3K-Akt signaling pathway. Finally, molecular docking was carried out to verify the binding ability between Acori graminei rhizoma and core genes. Our results predict that Acori graminei rhizoma can treat AD mainly by mediating Alzheimer’s signal pathway, thus reducing the production of Aβ, inhibiting the hyperphosphorylation of tau protein, regulating neurotrophic factors, and regulating the activity of kinase to change the function of the receptor.


2020 ◽  
Author(s):  
Mengke Sheng ◽  
Xing Liu ◽  
Qingsong Qu ◽  
Xiaowen Wu ◽  
Yuyao Liao ◽  
...  

Abstract Background: Chronic cough significantly affects human health and quality of life. Studies have shown that Sanao Decoction(SAD)can clinically treat chronic cough. To investigate its mechanisms, we used the method of network pharmacology to conduct research at the molecular level.Methods: The active ingredients and their targets were screened by pharmacokinetics parameters from the traditional Chinese medicine system pharmacology analysis platform (TCMSP). The relevant targets of chronic cough were obtained from two databases: GeneCards and DrugBank. Take the intersection to get potential targets of SAD to treat chronic cough and establish the component-target regulatory network by CytoScape3.7.2 and protein-protein interaction (PPI) network by STRING 1.0. The function of the target gene and related pathways were analyzed by the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) in the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The significant pathways and their relevant targets were obtained and the target-pathway network was established by CytoScape3.7.2. Finally, molecular docking of the core active components and relevant targets was performed.Results: A total of 98 active components, 113 targets were identified. The component-target and target-pathway network of SAD and PPI network were established. Enrichment analysis of DAVID indicated that 2062 terms were in biological processes, 77 in cellular components, 142 in molecular functions and 20 significant pathways. In addition, the molecular docking showed that quercetin and luteolin had a good combination with the corresponding targets.Conclusions: It indicates that the active compounds of SAD, such as quercetin, luteolin, may act on AKT1, MAPK1, RELA, EGFR, BCL2 and regulate PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complications and Fluid shear stress and atherosclerosis pathway to exert the effects of anti-inflammatory, anti-airway remodeling, anti-oxidant stress and repair airway damage to treat chronic cough.


Sign in / Sign up

Export Citation Format

Share Document