scholarly journals Atrial Arrhythmias in Patients with Severe COVID-19

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Kai-Yue Han ◽  
Qi Qiao ◽  
Ye-Qian Zhu ◽  
Xin-Guang Chen ◽  
Xing-Xing Kang ◽  
...  

The number of confirmed COVID-19 cases has increased drastically; however, information regarding the impact of this disease on the occurrence of arrhythmias is scarce. The aim of this study was to determine the impact of COVID-19 on arrhythmia occurrence. This prospective study included patients with COVID-19 treated at the Leishenshan Temporary Hospital of Wuhan City, China, from February 24 to April 5, 2020. Demographic, comorbidity, and arrhythmias data were collected from patients with COVID-19 (n = 84) and compared with control data from patients with bacterial pneumonia (n = 84) infection. Furthermore, comparisons were made between patients with severe and nonsevere COVID-19 and between older and younger patients. Compared with patients with bacterial pneumonia, those with COVID-19 had higher total, mean, and minimum heart rates (all P < 0.01 ). Patients with severe COVID-19 (severe and critical type diseases) developed more atrial arrhythmias compared with those with nonsevere symptoms. Plasma creatine kinase isoenzyme (CKMB) levels ( P = 0.01 ) were higher in the severe group than in the nonsevere group, and there were more deaths in the severe group than in the nonsevere group (6 (15%) vs. 3 (2.30%); P = 0.05 ). Premature atrial contractions (PAC) and nonsustained atrial tachycardia (NSAT) were significantly positively correlated with plasma CKMB levels but not with high-sensitive cardiac troponin I or myoglobin levels. Our data demonstrate that COVID-19 patients have higher total, mean, and minimum heart rates compared with those with bacterial pneumonia. Patients with severe or critical disease had more frequent atrial arrhythmias (including PAC and AF) and higher CKMB levels and mortality than those with nonsevere symptoms.

Perfusion ◽  
2021 ◽  
pp. 026765912110148
Author(s):  
Joseph Mc Loughlin ◽  
Lorraine Browne ◽  
John Hinchion

Objectives: Cardiac surgery using cardiopulmonary bypass frequently provokes a systemic inflammatory response syndrome. This can lead to the development of low cardiac output syndrome (LCOS). Both of these can affect morbidity and mortality. This study is a systematic review of the impact of gaseous nitric oxide (gNO), delivered via the cardiopulmonary bypass (CPB) circuit during cardiac surgery, on post-operative outcomes. It aims to summarise the evidence available, to assess the effectiveness of gNO via the CPB circuit on outcomes, and highlight areas of further research needed to develop this hypothesis. Methods: A comprehensive search of Pubmed, Embase, Web of Science and the Cochrane Library was performed in May 2020. Only randomised control trials (RCTs) were considered. Results: Three studies were identified with a total of 274 patients. There was variation in the outcomes measures used across the studies. These studies demonstrate there is evidence that this intervention may contribute towards cardioprotection. Significant reductions in cardiac troponin I (cTnI) levels and lower vasoactive inotrope scores were seen in intervention groups. A high degree of heterogeneity between the studies exists. Meta-analysis of the duration of mechanical ventilation, length of ICU stay and length of hospital stay showed no significant differences. Conclusion: This systematic review explored the findings of three pilot RCTs. Overall the hypothesis that NO delivered via the CPB circuit can provide cardioprotection has been supported by this study. There remains a significant gap in the evidence, further high-quality research is required in both the adult and paediatric populations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Clara Saad Menezes ◽  
Alicia Dudy Müller Veiga ◽  
Thais Martins de Lima ◽  
Suely Kunimi Kubo Ariga ◽  
Hermes Vieira Barbeiro ◽  
...  

AbstractThe role of innate immunity in COVID-19 is not completely understood. Therefore, this study explored the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection on the expression of Pattern Recognition Receptors (PRRs) in peripheral blood cells and their correlated cytokines. Seventy-nine patients with severe COVID-19 on admission, according to World Health Organization (WHO) classification, were divided into two groups: patients who needed mechanical ventilation and/or deceased (SEVERE, n = 50) and patients who used supplementary oxygen but not mechanical ventilation and survived (MILD, n = 29); a control group (CONTROL, n = 17) was also enrolled. In the peripheral blood, gene expression (mRNA) of Toll-like receptors (TLRs) 3, 4, 7, 8, and 9, retinoic-acid inducible gene I (RIGI), NOD-like receptor family pyrin domain containing 3 (NLRP3), interferon alpha (IFN-α), interferon beta (IFN-β), interferon gamma (IFN-γ), interferon lambda (IFN-λ), pro-interleukin(IL)-1β (pro-IL-1β), and IL-18 was determined on admission, between 5–9 days, and between 10–15 days. Circulating cytokines in plasma were also measured. When compared to the COVID-19 MILD group, the COVID-19 SEVERE group had lower expression of TLR3 and overexpression of TLR4.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chang Liu ◽  
Shuang Zhang ◽  
Chenzheng Zhang ◽  
Baojun Tai ◽  
Han Jiang ◽  
...  

Abstract Background The sudden outbreak of coronavirus disease (COVID-19) epidemic influenced people’s daily life. During lockdown of Wuhan city, the oral health and its associated issues of preschool children were investigated and guidance for dental clinics when the epidemic were controlled in the future were also provided. Methods A national online survey was conducted among preschool children and completed by their caregivers. The questionnaire related to children’s oral health status and care behaviour, caregivers' attitudes. The information was statistically analyzed between Wuhan residents and others residents. Results 4495 valid questionnaires were collected. In oral health status, during Wuhan lockdown, 60.8%, 35.5% and 18.3% children had self-reported dental caries, toothache and halitosis respectively. In oral health attitudes, respondents who would increase attention to oral health was more than that would decrease. In oral hygiene behaviour, compared to non-Wuhan children, the children in Wuhan became more active in brushing their teeth. In utilization of dental services in the future, less Wuhan residents would choose to have dental visit directly, 28.5% Wuhan residents and 34.7% non-Wuhan residents agreed all of procedures could be done if proper protected. Conclusions Oral health status and associated issues of preschool children in Wuhan were significantly different from that of others during lockdown of Wuhan city and in the future. Effective measures should be taken as early as possible to protect children's oral health.


2006 ◽  
Vol 290 (3) ◽  
pp. C719-C727 ◽  
Author(s):  
Frank C. Chen ◽  
Ozgur Ogut

The severity and duration of ischemia-reperfusion injury is hypothesized to play an important role in the ability of the heart subsequently to recover contractility. Permeabilized trabeculae were prepared from a rat model of ischemia-reperfusion injury to examine the impact on force generation. Compared with the control perfused condition, the maximum force (Fmax) per cross-sectional area and the rate of tension redevelopment of Ca2+-activated trabeculae fell by 71% and 44%, respectively, during ischemia despite the availability of a high concentration of ATP. The reduction in Fmax with ischemia was accompanied by a decline in fiber stiffness, implying a drop in the absolute number of attached cross bridges. However, the declines during ischemia were largely recovered after reperfusion, leading to the hypothesis that intrinsic, reversible posttranslational modifications to proteins of the contractile filaments occur during ischemia-reperfusion injury. Examination of thin-filament proteins from ischemic or ischemia-reperfused hearts did not reveal proteolysis of troponin I or T. However, actin was found to be glutathionylated with ischemia. Light-scattering experiments demonstrated that glutathionylated G-actin did not polymerize as efficiently as native G-actin. Although tropomyosin accelerated the time course of native and glutathionylated G-actin polymerization, the polymerization of glutathionylated G-actin still lagged native G-actin at all concentrations of tropomyosin tested. Furthermore, cosedimentation experiments demonstrated that tropomyosin bound glutathionylated F-actin with significantly reduced cooperativity. Therefore, glutathionylated actin may be a novel contributor to the diverse set of posttranslational modifications that define the function of the contractile filaments during ischemia-reperfusion injury.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Israel Júnior Borges do Nascimento ◽  
Dónal P. O’Mathúna ◽  
Thilo Caspar von Groote ◽  
Hebatullah Mohamed Abdulazeem ◽  
Ishanka Weerasekara ◽  
...  

Abstract Background Navigating the rapidly growing body of scientific literature on the SARS-CoV-2 pandemic is challenging, and ongoing critical appraisal of this output is essential. We aimed to summarize and critically appraise systematic reviews of coronavirus disease (COVID-19) in humans that were available at the beginning of the pandemic. Methods Nine databases (Medline, EMBASE, Cochrane Library, CINAHL, Web of Sciences, PDQ-Evidence, WHO’s Global Research, LILACS, and Epistemonikos) were searched from December 1, 2019, to March 24, 2020. Systematic reviews analyzing primary studies of COVID-19 were included. Two authors independently undertook screening, selection, extraction (data on clinical symptoms, prevalence, pharmacological and non-pharmacological interventions, diagnostic test assessment, laboratory, and radiological findings), and quality assessment (AMSTAR 2). A meta-analysis was performed of the prevalence of clinical outcomes. Results Eighteen systematic reviews were included; one was empty (did not identify any relevant study). Using AMSTAR 2, confidence in the results of all 18 reviews was rated as “critically low”. Identified symptoms of COVID-19 were (range values of point estimates): fever (82–95%), cough with or without sputum (58–72%), dyspnea (26–59%), myalgia or muscle fatigue (29–51%), sore throat (10–13%), headache (8–12%) and gastrointestinal complaints (5–9%). Severe symptoms were more common in men. Elevated C-reactive protein and lactate dehydrogenase, and slightly elevated aspartate and alanine aminotransferase, were commonly described. Thrombocytopenia and elevated levels of procalcitonin and cardiac troponin I were associated with severe disease. A frequent finding on chest imaging was uni- or bilateral multilobar ground-glass opacity. A single review investigated the impact of medication (chloroquine) but found no verifiable clinical data. All-cause mortality ranged from 0.3 to 13.9%. Conclusions In this overview of systematic reviews, we analyzed evidence from the first 18 systematic reviews that were published after the emergence of COVID-19. However, confidence in the results of all reviews was “critically low”. Thus, systematic reviews that were published early on in the pandemic were of questionable usefulness. Even during public health emergencies, studies and systematic reviews should adhere to established methodological standards.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S188-S189
Author(s):  
Deepika Sivakumar ◽  
Shelbye R Herbin ◽  
Raymond Yost ◽  
Marco R Scipione

Abstract Background Inpatient antibiotic use early on in the COVID-19 pandemic may have increased due to the inability to distinguish between bacterial and COVID-19 pneumonia. The purpose of this study was to determine the impact of COVID-19 on antimicrobial usage during three separate waves of the COVID-19 pandemic. Methods We conducted a retrospective review of patients admitted to Detroit Medical Center between 3/10/19 to 4/24/21. Median days of therapy per 1000 adjusted patient days (DOT/1000 pt days) was evaluated for all administered antibiotics included in our pneumonia guidelines during 4 separate time periods: pre-COVID (3/3/19-4/27/19); 1st wave (3/8/20-5/2/20); 2nd wave (12/6/21-1/30/21); and 3rd wave (3/7/21-4/24/21). Antibiotics included in our pneumonia guidelines include: amoxicillin, azithromycin, aztreonam, ceftriaxone, cefepime, ciprofloxacin, doxycycline, linezolid, meropenem, moxifloxacin, piperacillin-tazobactam, tobramycin, and vancomycin. The percent change in antibiotic use between the separate time periods was also evaluated. Results An increase in antibiotics was seen during the 1st wave compared to the pre-COVID period (2639 [IQR 2339-3439] DOT/1000 pt days vs. 2432 [IQR 2291-2499] DOT/1000 pt days, p=0.08). This corresponded to an increase of 8.5% during the 1st wave. This increase did not persist during the 2nd and 3rd waves of the pandemic, and the use decreased by 8% and 16%, respectively, compared to the pre-COVID period. There was an increased use of ceftriaxone (+6.5%, p=0.23), doxycycline (+46%, p=0.13), linezolid (+61%, p=0.014), cefepime (+50%, p=0.001), and meropenem (+29%, p=0.25) during the 1st wave compared to the pre-COVID period. Linezolid (+39%, p=0.013), cefepime (+47%, p=0.08) and tobramycin (+47%, p=0.05) use remained high during the 3rd wave compared to the pre-COVID period, but the use was lower when compared to the 1st and 2nd waves. Figure 1. Antibiotic Use 01/2019 to 04/2019 Conclusion Antibiotics used to treat bacterial pneumonia during the 1st wave of the pandemic increased and there was a shift to broader spectrum agents during that period. The increased use was not sustained during the 2nd and 3rd waves of the pandemic, possibly due to the increased awareness of the differences between patients who present with COVID-19 pneumonia and bacterial pneumonia. Disclosures All Authors: No reported disclosures


2018 ◽  
Vol 279 ◽  
pp. 64-69 ◽  
Author(s):  
Martin Wagner ◽  
Panos Skandamis ◽  
Franz Allerberger ◽  
Dagmar Schoder ◽  
Caroline Lassnig ◽  
...  

2013 ◽  
Vol 420 ◽  
pp. 82-88 ◽  
Author(s):  
Moltu J. Guy ◽  
Yi-Chen Chen ◽  
Laura Clinton ◽  
Han Zhang ◽  
Jiang Zhang ◽  
...  

Author(s):  
Phillip J. Wallace ◽  
Ricardo S Martins ◽  
Jake S Scott ◽  
Scott W Steele ◽  
Matthew Greenway ◽  
...  

Dopamine activity can modulate physical performance in the heat, but less is known about its effects on cognition during thermal stress. Twelves males completed a randomized, double-blinded protocol consisting of oral ingestion of 20 mg of methylphenidate (MPH) or placebo (lactose pill) during passive heating using a water-perfused suit (water temperature ~49°C). To identify the impact of peripheral versus central thermal strain, a cognitive test battery was completed at four different thermal states: baseline (BASE; 37.2±0.6˚C core, 32.9±0.7˚C skin), neutral core-hot skin (NC-HS; 37.2±0.3˚C, 37.4±0.3˚C), hyperthermic core-hot skin (HC-HS; 38.7±0.4˚C, 38.7±0.2˚C), and hyperthermic core-cooled skin (HC-CS; 38.5±0.4˚C, 35.1±0.8˚C). The cognitive test battery consisted of the 2-back task (i.e. working memory), set-shifting (i.e. executive function), Groton Maze Learning Task (i.e. executive function) and detection task (i.e. psychomotor processing). MPH led to significantly higher heart rates (~5-15 b·min-1) at BASE, NC-HS, and HC-HS (all p<0.05). There were no significant differences in the number of errors made on each task (all p<0.05). Participants were significantly faster (p<0.05) on the set-shifting task in the HC-HS timepoint, irrespective of drug condition (p>0.05). In summary, we demonstrated that 20 mg of MPH did not significantly alter cognitive function during either normothermia or moderate hyperthermia. Novelty: ● 20 mg of MPH did not significantly alter cognitive function during passive heat stress ● MPH led to significant higher heart rates (~5-15 bmin-1) in thermoneutral and during passive heat stress ● Future studies are needed to determine the mechanisms of why MPH improves physical but not cognitive performance during heat stress


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Vijaya Nath Mishra ◽  
Nidhi Kumari ◽  
Abhishek Pathak ◽  
Rajnish Kumar Chaturvedi ◽  
Arun Kumar Gupta ◽  
...  

An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan City, China, in December 2019. Since then, the outbreak has grown into a global pandemic, and neither a vaccine nor a treatment for the disease, termed coronavirus disease 2019 (COVID-19), is currently available. The slow translational progress in the field of research suggests that a large number of studies are urgently required. In this context, this review explores the impact of bacteriophages on SARS-CoV-2, especially concerning phage therapy (PT). Bacteriophages are viruses that infect and kill bacterial cells. Several studies have confirmed that in addition to their antibacterial abilities, bacteriophages also show antiviral and antifungal properties. It has also been shown that PT is effective for building immunity against viral pathogens by reducing the activation of NF kappa B; additionally, phages produce the antiviral protein phagicin. The Ganges river in India, which originates from the Himalayan range, is known to harbor a large number of bacteriophages, which are released into the river gradually by the melting permafrost. Water from this river has traditionally been considered a therapeutic agent for several diseases. In this review, we hypothesize that the Ganges river may play a therapeutic role in the treatment of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document