scholarly journals Pericardial Relapse of Acute Lymphoblastic Leukemia (ALL)

2021 ◽  
Vol 2021 ◽  
pp. 1-3
Author(s):  
Diana V. Maslov ◽  
Ambuga Badari

Acute lymphoblastic leukemia (ALL) is a neoplasm of the B cell or T cell. Diagnosis is made by peripheral blood smear and bone marrow biopsy. Those with relapse/measurable residual disease (MRD) present with fever, weakness, fatigue, and easy bruising due to bone marrow infiltration (Kantarjian et al., 2017). A 59-year-old male with history of relapsed acute lymphoblastic leukemia and allogeneic stem cell transplant presented to the Emergency Department (ED) multiple times with shortness of breath. 2D Echo revealed recurrent pericardial effusion. His MRD was discovered in the pericardium. He underwent the creation of a pericardial window with cytology and culture which confirmed B cell lymphoblastic leukemia/lymphoma, consistent with relapsed disease. We present a case of a patient with B-ALL and MRD who presented with symptoms of shortness of breath. His MRD was discovered not in the bone marrow, but in the pericardium.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie L. Rellick ◽  
Gangqing Hu ◽  
Debra Piktel ◽  
Karen H. Martin ◽  
Werner J. Geldenhuys ◽  
...  

AbstractB-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


Author(s):  
Franco Locatelli ◽  
Gerhard Zugmaier ◽  
Noemi Mergen ◽  
Peter Bader ◽  
Sima Jeha ◽  
...  

The safety and efficacy of blinatumomab, a CD3/CD19-directed bispecific T-cell engager molecule, for treatment of pediatric relapsed/refractory B-cell precursor acute lymphoblastic leukemia (R/R B-ALL) were examined in an open-label, single-arm, expanded access study (RIALTO). Children (>28 days, <18 years) with CD19+ R/R B-ALL received up to five cycles of blinatumomab by continuous infusion (cycle: 4 weeks on/2 weeks off). The primary endpoint was incidence of adverse events. Secondary endpoints included complete response (CR) and measurable residual disease (MRD) response within the first two cycles, relapse-free survival (RFS), overall survival (OS) and allogeneic hematopoietic stem cell transplant (alloHSCT) after treatment. At final data cutoff (1/10/20), 110 patients were enrolled (median age, 8.5 years; 88% ≥5% blasts at baseline). Blinatumomab treatment resulted in a low incidence of grade 3-4 cytokine release syndrome (n=2 [1.8%]) and neurologic events (n=4 [3.6%]). No blinatumomab-related fatal adverse events were reported. The probability of response was not affected by the presence of cytogenetic/molecular abnormalities. Median OS was 14.6 months (95%CI: 11.0─not estimable) and was significantly greater for MRD responders versus MRD non-responders (not estimable vs 9.3; HR 0.18, 95%CI: 0.08─0.39). One-year OS probability was higher for patients who received alloHSCT versus without alloHSCT post-blinatumomab (87% versus 29%). Median RFS for MRD responders (n=57) was 8.0 months (95%CI:3.4─10.1) versus 2.8 months (95%CI: 0.3─9.2) for MRD non-responders (n=10). Of patients achieving CR after 2 cycles, 73.5% (95%CI: 61.4%-83.5%) proceeded to alloHSCT. These findings support the use of blinatumomab as a safe and efficacious treatment for pediatric R/R B-ALL. (ClinicalTrials.gov identifier NCT02187354)


2019 ◽  
Vol 37 (36) ◽  
pp. 3493-3506 ◽  
Author(s):  
Cornelia Eckert ◽  
Stefanie Groeneveld-Krentz ◽  
Renate Kirschner-Schwabe ◽  
Nikola Hagedorn ◽  
Christiane Chen-Santel ◽  
...  

PURPOSE Minimal residual disease (MRD) helps to accurately assess when children with late bone marrow relapses of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) will benefit from allogeneic hematopoietic stem-cell transplantation (allo-HSCT). More detailed dissection of MRD response heterogeneity and the specific genetic aberrations could improve current practice. PATIENTS AND METHODS MRD was assessed after induction treatment and at different times during relapse treatment until allo-HSCT (indicated in poor responders to induction; MRD ≥ 10−3) for patients being treated for late BCP-ALL bone marrow relapses (n = 413; median follow-up, 9.4 years) in the ALL-REZ BFM 2002 trial/registry (ClinicalTrials.gov identifier: NCT00114348 ). RESULTS Patients with both good (MRD < 10−3) and poor responses to induction treatment reached excellent event-free survival (EFS; 72% v 65%) and overall survival (OS; 82% v 74%). Patients with MRD of 10−2 or greater after induction had reduced EFS (56%), and their MRD persisted until allo-HSCT more frequently than it did in patients with MRD of 10−3 or greater to less than 10−2 ( P = .037). Patients with 25% or more leukemic blasts after induction (early nonresponders) had the poorest prognosis (EFS, 22%). Interestingly, patients with MRD of 10−3 or greater before allo-HSCT (late nonresponders) still had an EFS of 50% and OS of 63%, which in principle justifies allo-HSCT in these patients. From a panel of selected candidate genes, TP53 alterations (frequency, 8%) were the only genetic alteration with independent prognostic value in any MRD-based response subgroup. CONCLUSION After induction treatment, MRD-based treatment stratification resulted in excellent survival in patients with late relapsed BCP-ALL. Prognosis could be further improved in very poor responders by intensifying treatment directly after induction. TP53 alterations can be defined as a novel genetic high-risk marker in all MRD response groups in late relapsed BCP-ALL. Here we identified early and late nonresponders to be considered as events in future trials.


2021 ◽  
Vol 5 (17) ◽  
pp. 3436-3444
Author(s):  
Hasmukh Jain ◽  
Manju Sengar ◽  
Vasu Babu Goli ◽  
Jayashree Thorat ◽  
Prashant Tembhare ◽  
...  

Abstract The expression of CD20 in precursor B-cell acute lymphoblastic leukemia (B-ALL) is associated with poor outcomes. The addition of rituximab to intensive chemotherapy in CD20+ ALL has led to improved outcomes in several studies. However, there is no clear evidence regarding the optimal number of doses and its benefit without an allogeneic stem cell transplant. Achieving measurable residual disease (MRD)-negative status postinduction would reduce the requirement for a transplant. Novel approaches are needed to induce a higher proportion of MRD-negative complete remission in patients with high-risk ALL. Given bortezomib’s activity in relapsed ALL and its synergism with rituximab in B-cell lymphomas, the addition of bortezomib to rituximab and chemotherapy may provide an incremental benefit in CD20+ precursor B-ALL. We conducted a phase 2 study to test the activity of bortezomib and rituximab in combination with a pediatric-inspired regimen during induction therapy in newly diagnosed adolescents and adults (aged &gt;14 years) with CD20+, Philadelphia-negative precursor B-ALL; bone marrow MRD negativity at the end of induction was the primary end point. From December 2017 through August 2019, a total of 35 patients were enrolled. End-of-induction MRD-negative status was achieved in 70.9% of patients, as opposed to 51.7% in the historical cohort treated with chemotherapy alone. MRD-negative rates improved to 87.5% post-consolidation. At a median follow-up of 21 months, event-free survival and overall survival rates were 78.8% (95% confidence interval, 66-94) and 78.7% (95% confidence interval, 65.8-94), respectively. There was no significant increase in toxicity with bortezomib and rituximab compared with the historical cohort. The incidence of neuropathy was 26% (all less than grade 3). The combination of bortezomib, rituximab, and a pediatric-inspired ALL regimen was active and well tolerated in de novo CD20+ Philadelphia-negative precursor B-ALL. This trial was registered with the Clinical Trials Registry-India as CTRI/2017/04/008393(http://ctri.nic.in/Clinicaltrials).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 808-808 ◽  
Author(s):  
Jonathan Bond ◽  
Tony Marchand ◽  
Aurore Touzart ◽  
Agata Cieslak ◽  
Amélie Trinquand ◽  
...  

Abstract Introduction: Gene expression studies have consistently identified a HOXA positive (HOXAPos) subgroup of T-cell acute lymphoblastic leukemia (T-ALL) (Ferrando et al, Cancer Cell 2002, Soulier et al, Blood 2005, Homminga et al, Cancer Cell 2011). It is however unclear if HOXAPos T-ALL constitutes a distinct and homogeneous clinical entity, and the biological consequences of HOXA over-expression have not been systematically examined. Methods: We identified and characterized the biological characteristics and clinical outcome of 55 HOXAPos cases among a cohort of 209 adult T-ALL patients who were uniformly treated as part of the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. Results: HOXAPos patients had higher rates of an early thymic precursor (ETP)-like immunophenotype (38% v 13.9%, p = 0.0008), early bone marrow chemoresistance (59.3% v 40.8%, p = 0.026) and positive minimal residual disease (MRD, 51.5% v 23.5%, p = 0.01) than the HOXANeg group. These differences were due to a particularly high frequency of chemoresistant ETP-ALL among HOXAPos cases harboring leukemic fusion proteins that trans-activate the HOXA locus (e.g. PICALM-MLLT10, SET-NUP214). Strikingly, the presence of an ETP-like immunophenotype conferred marked differences in outcome within the HOXAPos group (5 year event-free survival (EFS) 25% for HOXAPos ETP v 52.2% for HOXAPos non-ETP, p = 0.02), which were mirrored by corresponding increases in cumulative incidence of relapse (CIR, 57.1% v 25%, p = 0.01, Figure 1). In contrast, these survival differences were not seen in the HOXANeg patients, where ETP and non-ETP cases had similar 5 year EFS (54.9% v 50%, p = 0.73) and CIR (34.5% v 41.2%, p = 0.57). Multivariate analysis revealed that early bone marrow chemosensitivity was the clinico-biological covariate that had the strongest prognostic interaction with HOXA status. HOXA positivity conferred significant decreases in both the EFS and CIR of chemoresistant patients (p = 0.053 and 0.039 respectively), that was independent of white blood cell count (WCC), stem cell transplant (SCT), ETP phenotype, EGIL classification, and our recently reported risk classifier that integrates the prognostic effects of mutations of NOTCH1, FBXW7, RAS and PTEN (Trinquand et al, J Clin Oncol 2013). There were corresponding marked survival differences within the HOXAPos cohort between chemoresistant and chemosensitive cases. These disparities were not seen in the HOXANeg group, indicating that the prognostic value of chemosensitivity in adult T-ALL is specific to HOXAPos patients. Discussion: Our data show that clinico-biological phenotype is intimately linked to the underlying mechanism of HOXA locus deregulation, and we identify HOXA overexpression as a novel prognostic variable in ETP-ALL. Multivariate analysis suggests that this poor outcome is strongly related to intrinsic treatment resistance, and that this effect is exclusive to the HOXAPos cohort. Patients in the GRAALL-2003 and -2005 studies received enhanced induction and/ or salvage therapy in the event of poor early treatment response. Our results suggest that pediatric regimen-based intensification provides significant survival benefits for HOXANeg chemoresistant cases. In contrast, these modifications are inadequate for therapeutic rescue of the majority of HOXAPos chemoresistant ETP-ALL. The dramatically inferior prognosis of this group mandates consideration for alternative treatments in future clinical trials. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 2984-2990 ◽  
Author(s):  
Stella M. Davies ◽  
Michael J. Borowitz ◽  
Gary L. Rosner ◽  
Kristin Ritz ◽  
Meenakshi Devidas ◽  
...  

Abstract Minimal residual disease (MRD) as a marker of antileukemic drug efficacy is being used to assess risk status and, in some cases, to adjust the intensity of therapy. Within known prognostic categories, the determinants of MRD are not known. We measured MRD by flow cytometry at day 8 (in blood) and at day 28 (in bone marrow) of induction therapy in more than 1000 children enrolled in Pediatric Oncology Group therapy protocols 9904, 9905, and 9906. We classified patients as “best risk” if they had cleared MRD by day 8 of therapy and as “worst risk” if they had MRD remaining in bone marrow at day 28, and tested whether MRD was related to polymorphisms in 16 loci in genes hypothesized to influence response to therapy in acute lymphoblastic leukemia (ALL). After adjusting for known prognostic features such as presence of the TEL-AML1 rearrangement, National Cancer Institute (NCI) risk status, ploidy, and race, the G allele of a common polymorphism in chemokine receptor 5 (CCR5) was associated with more favorable MRD status than the A allele (P = .009, logistic regression), when comparing “best” and “worst” risk groups. These data are consistent with growing evidence that both acquired and host genetics influence response to cancer therapy.


2021 ◽  
pp. 106002802098841
Author(s):  
Zachery Halford ◽  
Carli Coalter ◽  
Vanessa Gresham ◽  
Tabitha Brown

Objective: To assess the current literature for blinatumomab in the treatment of adult and pediatric B-cell acute lymphoblastic leukemia (ALL). Data Sources: We conducted a PubMed (inception to December 11, 2020) and ClinicalTrials.gov systematic literature search using the following terms: blinatumomab, Blincyto, lymphoblastic leukemia, and bispecific T-cell engager. Study Selection and Data Extraction: All relevant published articles, package inserts, and meeting abstracts evaluating the use of blinatumomab in ALL were considered for inclusion. Data Synthesis: Blinatumomab, a first-in-class bispecific T-cell engager monoclonal antibody, facilitates cytotoxic T-cell activation and subsequent eradication of CD19-positive B cells. The confirmatory phase III TOWER trial demonstrated superior overall survival (OS) with blinatumomab compared with standard chemotherapy (7.7 months vs 4.0 months) in relapsed and refractory (R/R) B-cell ALL. In the phase II BLAST trial, blinatumomab achieved a complete measurable residual disease (MRD) response in 78% of evaluable patients, with a median OS of 36.5 months. Potentially life-threatening cytokine release syndrome and neurotoxicity occurred in approximately 15% and 65% of patients, respectively. Relevance to Patient Care and Clinical Practice: Following initial Food and Drug Administration approval in 2014, blinatumomab gained expanded approval in pediatric patients and in Philadelphia chromosome-positive R/R ALL. In 2018, blinatumomab became the first and only drug approved for the treatment of persistent MRD in any hematologic malignancy. Emerging data demonstrate promising efficacy with blinatumomab in specific ALL settings, including frontline therapy, as a bridge to transplantation, and in “chemotherapy-free” combination regimens. Conclusions: Blinatumomab provides a paradigm-shifting treatment option; however, many questions surrounding optimal patient selection, sequencing, and cost-effectiveness remain.


Sign in / Sign up

Export Citation Format

Share Document