scholarly journals Efficient Approach towards Detection and Identification of Copy Move and Image Splicing Forgeries Using Mask R-CNN with MobileNet V1

2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Kalyani Dhananjay Kadam ◽  
Swati Ahirrao ◽  
Ketan Kotecha

With the technological advancements of the modern era, the easy availability of image editing tools has dramatically minimized the costs, expense, and expertise needed to exploit and perpetuate persuasive visual tampering. With the aid of reputable online platforms such as Facebook, Twitter, and Instagram, manipulated images are distributed worldwide. Users of online platforms may be unaware of the existence and spread of forged images. Such images have a significant impact on society and have the potential to mislead decision-making processes in areas like health care, sports, crime investigation, and so on. In addition, altered images can be used to propagate misleading information which interferes with democratic processes (e.g., elections and government legislation) and crisis situations (e.g., pandemics and natural disasters). Therefore, there is a pressing need for effective methods for the detection and identification of forgeries. Various techniques are currently employed for the identification and detection of these forgeries. Traditional techniques depend on handcrafted or shallow-learning features. In traditional techniques, selecting features from images can be a challenging task, as the researcher has to decide which features are important and which are not. Also, if the number of features to be extracted is quite large, feature extraction using these techniques can become time-consuming and tedious. Deep learning networks have recently shown remarkable performance in extracting complicated statistical characteristics from large input size data, and these techniques efficiently learn underlying hierarchical representations. However, the deep learning networks for handling these forgeries are expensive in terms of the high number of parameters, storage, and computational cost. This research work presents Mask R-CNN with MobileNet, a lightweight model, to detect and identify copy move and image splicing forgeries. We have performed a comparative analysis of the proposed work with ResNet-101 on seven different standard datasets. Our lightweight model outperforms on COVERAGE and MICCF2000 datasets for copy move and on COLUMBIA dataset for image splicing. This research work also provides a forged percentage score for a region in an image.

Author(s):  
Yanteng Zhang ◽  
Qizhi Teng ◽  
Linbo Qing ◽  
Yan Liu ◽  
Xiaohai He

Alzheimer’s disease (AD) is a degenerative brain disease and the most common cause of dementia. In recent years, with the widespread application of artificial intelligence in the medical field, various deep learning-based methods have been applied for AD detection using sMRI images. Many of these networks achieved AD vs HC (Healthy Control) classification accuracy of up to 90%but with a large number of computational parameters and floating point operations (FLOPs). In this paper, we adopt a novel ghost module, which uses a series of cheap operations of linear transformation to generate more feature maps, embedded into our designed ResNet architecture for task of AD vs HC classification. According to experiments on the OASIS dataset, our lightweight network achieves an optimistic accuracy of 97.92%and its total parameters are dozens of times smaller than state-of-the-art deep learning networks. Our proposed AD classification network achieves better performance while the computational cost is reduced significantly.


2020 ◽  
Vol 10 (12) ◽  
pp. 4282
Author(s):  
Ghada Zamzmi ◽  
Sivaramakrishnan Rajaraman ◽  
Sameer Antani

Medical images are acquired at different resolutions based on clinical goals or available technology. In general, however, high-resolution images with fine structural details are preferred for visual task analysis. Recognizing this significance, several deep learning networks have been proposed to enhance medical images for reliable automated interpretation. These deep networks are often computationally complex and require a massive number of parameters, which restrict them to highly capable computing platforms with large memory banks. In this paper, we propose an efficient deep learning approach, called Hydra, which simultaneously reduces computational complexity and improves performance. The Hydra consists of a trunk and several computing heads. The trunk is a super-resolution model that learns the mapping from low-resolution to high-resolution images. It has a simple architecture that is trained using multiple scales at once to minimize a proposed learning-loss function. We also propose to append multiple task-specific heads to the trained Hydra trunk for simultaneous learning of multiple visual tasks in medical images. The Hydra is evaluated on publicly available chest X-ray image collections to perform image enhancement, lung segmentation, and abnormality classification. Our experimental results support our claims and demonstrate that the proposed approach can improve the performance of super-resolution and visual task analysis in medical images at a remarkably reduced computational cost.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4325
Author(s):  
Tiange Wang ◽  
Fangfang Yang ◽  
Kwok-Leung Tsui

Railway inspection has always been a critical task to guarantee the safety of the railway transportation. The development of deep learning technologies brings new breakthroughs in the accuracy and speed of image-based railway inspection application. In this work, a series of one-stage deep learning approaches, which are fast and accurate at the same time, are proposed to inspect the key components of railway track including rail, bolt, and clip. The inspection results show that the enhanced model, the second version of you only look once (YOLOv2), presents the best component detection performance with 93% mean average precision (mAP) at 35 image per second (IPS), whereas the feature pyramid network (FPN) based model provides a smaller mAP and much longer inference time. Besides, the detection performances of more deep learning approaches are evaluated under varying input sizes, where larger input size usually improves the detection accuracy but results in a longer inference time. Overall, the YOLO series models could achieve faster speed under the same detection accuracy.


Author(s):  
Tung T. Vu ◽  
Ha Hoang Kha

In this research work, we investigate precoder designs to maximize the energy efficiency (EE) of secure multiple-input multiple-output (MIMO) systems in the presence of an eavesdropper. In general, the secure energy efficiency maximization (SEEM) problem is highly nonlinear and nonconvex and hard to be solved directly. To overcome this difficulty, we employ a branch-and-reduce-and-bound (BRB) approach to obtain the globally optimal solution. Since it is observed that the BRB algorithm suffers from highly computational cost, its globally optimal solution is importantly served as a benchmark for the performance evaluation of the suboptimal algorithms. Additionally, we also develop a low-complexity approach using the well-known zero-forcing (ZF) technique to cancel the wiretapped signal, making the design problem more amenable. Using the ZF based method, we transform the SEEM problem to a concave-convex fractional one which can be solved by applying the combination of the Dinkelbach and bisection search algorithm. Simulation results show that the ZF-based method can converge fast and obtain a sub-optimal EE performance which is closed to the optimal EE performance of the BRB method. The ZF based scheme also shows its advantages in terms of the energy efficiency in comparison with the conventional secrecy rate maximization precoder design.


Author(s):  
Tu Huynh-Kha ◽  
Thuong Le-Tien ◽  
Synh Ha ◽  
Khoa Huynh-Van

This research work develops a new method to detect the forgery in image by combining the Wavelet transform and modified Zernike Moments (MZMs) in which the features are defined from more pixels than in traditional Zernike Moments. The tested image is firstly converted to grayscale and applied one level Discrete Wavelet Transform (DWT) to reduce the size of image by a half in both sides. The approximation sub-band (LL), which is used for processing, is then divided into overlapping blocks and modified Zernike moments are calculated in each block as feature vectors. More pixels are considered, more sufficient features are extracted. Lexicographical sorting and correlation coefficients computation on feature vectors are next steps to find the similar blocks. The purpose of applying DWT to reduce the dimension of the image before using Zernike moments with updated coefficients is to improve the computational time and increase exactness in detection. Copied or duplicated parts will be detected as traces of copy-move forgery manipulation based on a threshold of correlation coefficients and confirmed exactly from the constraint of Euclidean distance. Comparisons results between proposed method and related ones prove the feasibility and efficiency of the proposed algorithm.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2019 ◽  
Author(s):  
Elvira Perez Vallejos ◽  
Liz Dowthwaite ◽  
Helen Creswich ◽  
Virginia Portillo ◽  
Ansgar Koene ◽  
...  

BACKGROUND Algorithms rule the online environments and are essential for performing data processing, filtering, personalisation and other tasks. Research has shown that children and young people make up a significant proportion of Internet users, however little attention has been given to their experiences of algorithmically-mediated online platforms, or the impact of them on their mental health and well-being. The algorithms that govern online platforms are often obfuscated by a lack of transparency in their online Terms and Conditions and user agreements. This lack of transparency speaks to the need for protecting the most vulnerable users from potential online harms. OBJECTIVE To capture young people's experiences when being online and perceived impact on their well-being. METHODS In this paper, we draw on qualitative and quantitative data from a total of 260 children and young people who took part in a ‘Youth Jury’ to bring their opinions to the forefront, elicit discussion of their experiences of using online platforms, and perceived psychosocial impact on users. RESULTS The results of the study revealed the young people’s positive as well as negative experiences of using online platforms. Benefits such as being convenient and providing entertainment and personalised search results were identified. However, the data also reveals participants’ concerns for their privacy, safety and trust when online, which can have a significant impact on their well-being. CONCLUSIONS We conclude by making recommendations that online platforms acknowledge and enact on their responsibility to protect the privacy of their young users, recognising the significant developmental milestones that this group experience during these early years, and the impact that technology may have on them. We argue that governments need to incorporate policies that require technologists and others to embed the safeguarding of users’ well-being within the core of the design of Internet products and services to improve the user experiences and psychological well-being of all, but especially those of children and young people. CLINICALTRIAL N/A


2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


Sign in / Sign up

Export Citation Format

Share Document