scholarly journals Intelligent Diagnosis Method for New Diseases Based on Fuzzy SVM Incremental Learning

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Shi Song-men

The diagnosis of new diseases is a challenging problem. In the early stage of the emergence of new diseases, there are few case samples; this may lead to the low accuracy of intelligent diagnosis. Because of the advantages of support vector machine (SVM) in dealing with small sample problems, it is selected for the intelligent diagnosis method. The standard SVM diagnosis model updating needs to retrain all samples. It costs huge storage and calculation costs and is difficult to adapt to the changing reality. In order to solve this problem, this paper proposes a new disease diagnosis method based on Fuzzy SVM incremental learning. According to SVM theory, the support vector set and boundary sample set related to the SVM diagnosis model are extracted. Only these sample sets are considered in incremental learning to ensure the accuracy and reduce the cost of calculation and storage. To reduce the impact of noise points caused by the reduction of training samples, FSVM is used to update the diagnosis model, and the generalization is improved. The simulation results on the banana dataset show that the proposed method can improve the classification accuracy from 86.4% to 90.4%. Finally, the method is applied in COVID-19’s diagnostic. The diagnostic accuracy reaches 98.2% as the traditional SVM only gets 84%. With the increase of the number of case samples, the model is updated. When the training samples increase to 400, the number of samples participating in training is only 77; the amount of calculation of the updated model is small.

Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 359 ◽  
Author(s):  
Jianghua Ge ◽  
Guibin Yin ◽  
Yaping Wang ◽  
Di Xu ◽  
Fen Wei

To improve the accuracy of rolling-bearing fault diagnosis and solve the problem of incomplete information about the feature-evaluation method of the single-measurement model, this paper combines the advantages of various measurement models and proposes a fault-diagnosis method based on multi-measurement hybrid-feature evaluation. In this study, an original feature set was first obtained through analyzing a collected vibration signal. The feature set included time- and frequency-domain features, and also, based on the empirical-mode decomposition (EMD)-obtained time-frequency domain, energy and Lempel–Ziv complexity features. Second, a feature-evaluation framework of multiplicative hybrid models was constructed based on correlation, distance, information, and other measures. The framework was used to rank features and obtain rank weights. Then the weights were multiplied by the features to obtain a new feature set. Finally, the fault-feature set was used as the input of the category-divergence fault-diagnosis model based on kernel principal component analysis (KPCA), and the fault-diagnosis model was based on a support vector machine (SVM). The clustering effect of different fault categories was more obvious and classification accuracy was improved.


2019 ◽  
Vol 9 (2) ◽  
pp. 224 ◽  
Author(s):  
Siyuan Liang ◽  
Yong Chen ◽  
Hong Liang ◽  
Xu Li

Permanent magnet synchronous motors (PMSM) has the advantages of simple structure, small size, high efficiency, and high power factor, and a key dynamic source and is widely used in industry, equipment and electric vehicle. Aiming at its inter-turn short-circuit fault, this paper proposes a fault diagnosis method based on sparse representation and support vector machine (SVM). Firstly, the sparse representation is used to extract the first and second largest sparse coefficients of both current signal and vibration signals, and then they are composed into four-dimensional feature vectors. Secondly, the feature vectors are input into the support vector machine for fault diagnosis, which is suitable for small sample. Experiments on a permanent magnet synchronous motor with artificially set inter-turn short-circuit fault and a normal one showed that the method is feasible and accurate.


2013 ◽  
Vol 336-338 ◽  
pp. 2339-2343 ◽  
Author(s):  
Yong Gan ◽  
Xin Xin Liu ◽  
Yuan Pan Zheng

For the problem of data limited in the mountainous area, a method of FLS-SVM (Fuzzy Least Square Vector Machine) that supporting small sample data and having high noise ability was put forward. The CPSO(chaos particle swarm optimization algorithm) is adopted to optimize the parameters of least squares support vector machine algorithm, and to avoid the uncertainty of artificial parameter selection. Meanwhile, considering the impact of terrain, the terrain correction is introduced to the support vector machine model. The experimental results show that the model can get higher precision fitting effect compared with traditional fitting method such as PSO-LSSVM and GA-LSSVM, and suitable for the SRTM application of getting normal height.


2013 ◽  
Vol 724-725 ◽  
pp. 593-597 ◽  
Author(s):  
Chang Liang Liu ◽  
Wei Xue Qi

Aiming at the fault characteristics of high-speed gearbox fault diagnosis of wind turbine, a fault diagnosis method of combining wavelet analysis with least square-support vector machine (LS-SVM) is proposed. According to the method, the energy of frequency bands generated by wavelet decomposition and reconstruction of the high-speed gearbox's vibration signals in different fault states is normalized as eigenvectors, forming training and testing samples of LS-SVM fault classifier. Train the LS-SVM fault diagnosis model with the training samples and test the accuracy with the testing samples. The result of research shows that the fault diagnosis method based on the wavelet analysis and LS-SVM has good diagnostics effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hongtao Xue ◽  
Zhongxing Li ◽  
Huaqing Wang ◽  
Peng Chen

This paper proposed an intelligent diagnosis method for a centrifugal pump system using statistic filter, support vector machine (SVM), possibility theory, and Dempster-Shafer theory (DST) on the basis of the vibration signals, to diagnose frequent faults in the centrifugal pump at an early stage, such as cavitation, impeller unbalance, and shaft misalignment. Firstly, statistic filter is used to extract the feature signals of pump faults from the measured vibration signals across an optimum frequency region, and nondimensional symptom parameters (NSPs) are defined to represent the feature signals for distinguishing fault types. Secondly, the optimal classification hyperplane for distinguishing two states is obtained by SVM and NSPs, and its function is defined as synthetic symptom parameter (SSP) in order to increase the diagnosis’ sensitivity. Finally, the possibility functions of the SSP are used to construct a sequential fuzzy diagnosis for fault detection and fault-type identification by possibility theory and DST. The proposed method has been applied to detect the faults of the centrifugal pump, and the efficiency of the method has been verified using practical examples.


2017 ◽  
Vol 24 (s3) ◽  
pp. 200-206 ◽  
Author(s):  
Donghua Feng ◽  
Yahong Li

Abstract Aiming at the problem of inaccurate and time-consuming of the fault diagnosis method for large-scale ship engine, an intelligent diagnosis method for large-scale ship engine fault in non-deterministic environment based on neural network is proposed. First, the possible fault of the engine was analyzed, and the downtime fault of large-scale ship engine and the main fault mode were identified. On this basis, the fault diagnosis model for large-scale ship engine based on neural network is established, and the intelligent diagnosis of engine fault is completed. The experiment proved that the proposed method has high diagnostic accuracy, engine fault diagnosis takes only about 3s, with a higher use value.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hong Yin ◽  
Zenghui Wang ◽  
Mingming Cao ◽  
Zhenrui Peng ◽  
Kangli Dong

Aiming at the problems that Markov chain Monte Carlo algorithm is not easy to converge, has high rejection rate, and is easy to be disturbed by the noise when the parameter dimension is high, an improved model updating method combining the singular values of frequency response functions and the beetle antennae search algorithm is proposed. Firstly, the Latin hypercube sampling is used to extract the training samples. The Hankel matrix is reconstructed using the calculated frequency response functions and is decomposed by singular value decomposition. The effective singular values are retained to represent the frequency response functions. Secondly, according to the training samples and the corresponding singular values, the support vector machine surrogate model is fitted and its accuracy is tested. Then, the posterior probability distribution of parameters is estimated by introducing the beetle antennae search algorithm on the basis of standard Metropolis–Hastings algorithm to improve the performance of Markov chains and the ergodicity of samples. The results of examples show that the Markov chains have better overall performance and the acceptance rate of candidate samples is increased after updating. Even if the Gaussian white noise is introduced into the test frequency response functions under the single and multiple working damage conditions, satisfactory updating results can also be obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Mingfeng Jiang ◽  
Feng Liu ◽  
Yaming Wang ◽  
Guofa Shou ◽  
Wenqing Huang ◽  
...  

Noninvasive electrocardiographic imaging, such as the reconstruction of myocardial transmembrane potentials (TMPs) distribution, can provide more detailed and complicated electrophysiological information than the body surface potentials (BSPs). However, the noninvasive reconstruction of the TMPs from BSPs is a typical inverse problem. In this study, this inverse ECG problem is treated as a regression problem with multi-inputs (BSPs) and multioutputs (TMPs), which will be solved by the Maximum Margin Clustering- (MMC-) Support Vector Regression (SVR) method. First, the MMC approach is adopted to cluster the training samples (a series of time instant BSPs), and the individual SVR model for each cluster is then constructed. For each testing sample, we find its matched cluster and then use the corresponding SVR model to reconstruct the TMPs. Using testing samples, it is found that the reconstructed TMPs results with the MMC-SVR method are more accurate than those of the single SVR method. In addition to the improved accuracy in solving the inverse ECG problem, the MMC-SVR method divides the training samples into clusters of small sample sizes, which can enhance the computation efficiency of training the SVR model.


Author(s):  
X L Zhang ◽  
X F Chen ◽  
Z J He

Since support vector machines (SVM) exhibit a good generalization performance in the small sample cases, these have a wide application in machinery fault diagnosis. However, a problem arises from setting optimal parameters for SVM so as to obtain optimal diagnosis result. This article presents a fault diagnosis method based on SVM with parameter optimization by ant colony algorithm to attain a desirable fault diagnosis result, which is performed on the locomotive roller bearings to validate its feasibility and efficiency. The experiment finds that the proposed algorithm of ant colony optimization with SVM (ACO—SVM) can help one to obtain a good fault diagnosis result, which confirms the advantage of the proposed ACO—SVM approach.


Sign in / Sign up

Export Citation Format

Share Document