scholarly journals The Spherical Sample Method in Neutron Diffraction Texture Determination

Texture ◽  
1972 ◽  
Vol 1 (2) ◽  
pp. 125-127 ◽  
Author(s):  
J. Tobisch ◽  
H. J. Bunge

Neutron diffraction proves advantageous as compared to X-ray diffraction in texture analysis because of the lower absorption coefficient for a broad variety of materials especially metals. The spherical sample method is recommended because it yields the most reliable results and it does not require great preparational efforts. The fundamental difference between the spherical sample method in X-ray and in neutron diffraction is discussed.

1989 ◽  
Vol 10 (4) ◽  
pp. 325-346 ◽  
Author(s):  
H.-G. Brokmeier

Neutron diffraction methods for texture analysis are closely parallel to well-known X-ray diffraction techniques. The chief advantage of neutron diffraction over X-ray diffraction, however, arises from the fact that the interaction of neutrons with matter is relatively weak, and consequently the penetration depth of neutrons is 102–103 times larger than that of X-rays. Hence neutron diffraction is an efficient tool for measuring textures in multi-phase systems. Based on the high transmission of a neutron beam the effect of anisotropic absorption in multi-phase materials can be neglected in most cases. Moreover, the analysis of bulk textures becomes possible, such that textures in a wide variety of multi-phase systems can be studied which are of special interest in engineering and science (metals, alloys, composites, ceramics and geological specimens).


Author(s):  
M. D. Vaudin ◽  
J. P. Cline

The study of preferred crystallographic orientation (texture) in ceramics is assuming greater importance as their anisotropic crystal properties are being used to advantage in an increasing number of applications. The quantification of texture by a reliable and rapid method is required. Analysis of backscattered electron Kikuchi patterns (BEKPs) can be used to provide the crystallographic orientation of as many grains as time and resources allow. The technique is relatively slow, particularly for noncubic materials, but the data are more accurate than any comparable technique when a sufficient number of grains are analyzed. Thus, BEKP is well-suited as a verification method for data obtained in faster ways, such as x-ray or neutron diffraction. We have compared texture data obtained using BEKP, x-ray diffraction and neutron diffraction. Alumina specimens displaying differing levels of axisymmetric (0001) texture normal to the specimen surface were investigated.BEKP patterns were obtained from about a hundred grains selected at random in each specimen.


Author(s):  
Mateus Dobecki ◽  
Alexander Poeche ◽  
Walter Reimers

AbstractDespite the ongoing success of understanding the deformation states in sheets manufactured by single-point incremental forming (SPIF), the unawareness of the spatially resolved influence of the forming mechanisms on the residual stress states of incrementally formed sheet metal parts impedes their application-optimized use. In this study, a well-founded experimental proof of the occurring forming mechanisms shear, bending and stretching is presented using spatially resolved, high-energy synchrotron x-ray diffraction-based texture analysis in transmission mode. The measuring method allows even near-surface areas to be examined without any impairment of microstructural influences due to tribological reactions. The depth-resolved texture evolution for different sets of forming parameters offers insights into the forming mechanisms acting in SPIF. Therefore, the forming mechanisms are triggered explicitly by adjusting the vertical step-down increment Δz for groove, plate and truncated cone geometries. The texture analysis reveals that the process parameters and the specimen geometries used lead to characteristic changes in the crystallites’ orientation distribution in the formed parts due to plastic deformation. These forming-induced reorientations of the crystallites could be assigned to the forming mechanisms by means of defined reference states. It was found that for groove, plate and truncated cone geometries, a decreasing magnitude of step-down increments leads to a more pronounced shear deformation, which causes an increasing work hardening especially at the tool contact area of the formed parts. Larger step-down increments, on the other hand, induce a greater bending deformation. The plastic deformation by bending leads to a complex stress field that involves alternating residual tensile stresses on the tool and residual compressive stresses on the tool-averted side incrementally formed sheets. The present study demonstrates the potential of high-energy synchrotron x-ray diffraction for the spatially resolved forming mechanism research in SPIF. Controlling the residual stress states by optimizing the process parameters necessitates knowledge of the fundamental forming mechanism action.


1994 ◽  
Vol 376 ◽  
Author(s):  
M. Vrána ◽  
P. Klimanek ◽  
T. Kschidock ◽  
P. Lukáš ◽  
P. Mikula

ABSTRACTInvestigation of strongly distorted crystal structures caused by dislocations, stacking-faults etc. in both plastically deformed f.c.c. and b.c.c. metallic materials was performed by the analysis of the neutron diffraction line broadening. Measurements were realized by means of the high resolution triple-axis neutron diffractometer equipped by bent Si perfect crystals as monochromator and analyzer at the NPI Řež. The substructure parameters obtained in this manner are in good agreement with the results of X-ray diffraction analysis.


2013 ◽  
Vol 772 ◽  
pp. 193-199 ◽  
Author(s):  
Carsten Ohms ◽  
Rene V. Martins

Bi-metallic piping welds are frequently used in light water nuclear reactors to connect ferritic steel pressure vessel nozzles to austenitic stainless steel primary cooling piping systems. An important aspect for the integrity of such welds is the presence of residual stresses. Measurement of these residual stresses presents a considerable challenge because of the component size and because of the material heterogeneity in the weld regions. The specimen investigated here was a thin slice cut from a full-scale bi-metallic piping weld mock-up. A similar mock-up had previously been investigated by neutron diffraction within a European research project called ADIMEW. However, at that time, due to the wall thickness of the pipe, stress and spatial resolution of the measurements were severely restricted. One aim of the present investigations by high energy synchrotron radiation and neutrons used on this thin slice was to determine whether such measurements would render a valid representation of the axial strains and stresses in the uncut large-scale structure. The advantage of the small specimen was, apart from the easier manipulation, the fact that measurement times facilitated a high density of measurements across large parts of the test piece in a reasonable time. Furthermore, the recording of complete diffraction patterns within the accessible diffraction angle range by synchrotron X-ray diffraction permitted mapping the texture variations. The strain and stress results obtained are presented and compared for the neutron and synchrotron X-ray diffraction measurements. A strong variation of the texture pole orientations is observed in the weld regions which could be attributed to individual weld torch passes. The effect of specimen rocking on the scatter of the diffraction data in the butt weld region is assessed during the neutron diffraction measurements.


Author(s):  
Giulia Novelli ◽  
Charles J. McMonagle ◽  
Florian Kleemiss ◽  
Michael Probert ◽  
Horst Puschmann ◽  
...  

The crystal structure of the monoclinic polymorph of the primary amino acid L-histidine has been determined for the first time by single-crystal neutron diffraction, while that of the orthorhombic polymorph has been reinvestigated with an untwinned crystal, improving the experimental precision and accuracy. For each polymorph, neutron diffraction data were collected at 5, 105 and 295 K. Single-crystal X-ray diffraction experiments were also performed at the same temperatures. The two polymorphs, whose crystal packing is interpreted by intermolecular interaction energies calculated using the Pixel method, show differences in the energy and geometry of the hydrogen bond formed along the c direction. Taking advantage of the X-ray diffraction data collected at 5 K, the precision and accuracy of the new Hirshfeld atom refinement method implemented in NoSpherA2 were probed choosing various settings of the functionals and basis sets, together with the use of explicit clusters of molecules and enhanced rigid-body restraints for H atoms. Equivalent atomic coordinates and anisotropic displacement parameters were compared and found to agree well with those obtained from the corresponding neutron structural models.


Sign in / Sign up

Export Citation Format

Share Document