scholarly journals The HiNF-P/p220NPAT Cell Cycle Signaling Pathway Controls Nonhistone Target Genes

2007 ◽  
Vol 67 (21) ◽  
pp. 10334-10342 ◽  
Author(s):  
Ricardo Medina ◽  
Margaretha van der Deen ◽  
Angela Miele-Chamberland ◽  
Rong-Lin Xie ◽  
Andre J. van Wijnen ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Qian Xu ◽  
Zhenwu Xu ◽  
Kai Zhu ◽  
Jinlan Lin ◽  
Bo Ye

BackgroundLINC00346 has recently been reported to regulate the development of several cancer types, but its biological functions and underlying mechanisms in lung adenocarcinoma (LUAD) have not been elucidated. The purpose of this study was to investigate the molecular mechanism of LINC00346 in the progression of LUAD.MethodsBioinformatics was performed to find the target lncRNA, miRNA and mRNA, and the binding relationship between the target genes was verified by dual luciferase reporter gene and RIP assays. Fluorescence in situ hybridization was used to detect the location of LINC00346 in LUAD tissues. The expressions of LINC00346, miR-30c-2-3p and MYBL2 in each group were detected by qRT-PCR, and western blot was performed to detect expressions of MYBL2 and CELL CYCLE related proteins. Proliferation, metastasis, apoptosis and cell cycle of LUAD cells were detected by CCK-8, colony formation, Transwell and flow cytometry assays, respectively. Mouse xenograft models were established to further determine the effects of LINC00346 on LUAD tumor growth in vivo.ResultsLINC00346 was upregulated in LUAD tissues and cells and was mainly localized in the cytoplasm. Knockdown of LINC00346 inhibited tumor growth in vivo, proliferation, metastasis and cell cycle progression, while induced apoptosis. LINC00346 sponged miR-30c-2-3 by targeting MYBL2 and regulating CELL CYCLE signaling pathway. Inhibiting miR-30c-2-3p or overexpressing MYBL2 could reverse the inhibitory effect of LINC00346 knockdown on LUAD process.ConclusionsLINC00346 as a ceRNA played a carcinogenic role in the development of LUAD via miR-30c-2-3p/MYBL2 axis regulating the CELL CYCLE signaling pathway. The study generally elucidated the mechanism by which LINC00346 regulated the development of LUAD, providing new ideas for the diagnosis and treatment of LUAD guided by lncRNA.


Author(s):  
Li Jiang ◽  
Xu-Hai Zhao ◽  
Yin-Ling Mao ◽  
Jun-Feng Wang ◽  
Hui-Jun Zheng ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are tumor-associated biological molecules and have been found to be implicated in the progression of colorectal cancer (CRC). This study aims to examine the effects of lncRNA RP11-468E2.5 and its target genes (STAT5 and STAT6) on the biological activities of CRC cells via the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway. Methods We initially screened the GEO database for differentially expressed lncRNAs related to CRC and then made a prediction of the implicated target genes. Then we collected CRC tissues and adjacent normal tissues from 169 CRC patients. Human CRC HCT116 and SW480 cells were treated with small interference RNA (siRNA) against RP11-468E2.5, AG490 (an inhibitor of the JAK/STAT signaling pathway), or both in combination. Next, we measured the effects of RP11-468E2.5 treatment on cellular activities such as cell viability, cycle distribution and cell apoptosis, and studied interactions among RP11-468E2.5, STAT5/STAT6, and the JAK/STAT signaling pathway. Finally, an in vivo tumor formation assay was performed to observe the effect of RP11-468E2.5 on tumor growth. Results The CRC-related gene microarray data showed low expression of RP11-468E2.5 in CRC surgical specimens. However, RP11-468E2.5 was confirmed to target STAT5 and STAT6, which participate in the JAK/STAT signaling pathway. CRC tissues showed lower expression of RP11-468E2.5, higher expression of STAT5, STAT6 and of the cell cycle marker Cyclin D1 (CCND1), compared to the findings in adjacent normal tissues. The treatment of siRNA against RP11-468E2.5 increased expression of JAK2, STAT3, STAT5, STAT6, CCND1 and Bcl-2 along with the extent of STAT3, STAT5 and STAT6 phosphorylation, while lowering expression of P21 and P27. Treatment with AG490 exhibited approximately opposite effects, whereas siRNA against RP11-468E2.5 treatment stimulated CRC cell proliferation and reduced cell apoptosis, while promoting cell cycle entry; AG490 treatment reversed these results. Conclusions Altogether, we conclude that up-regulation of RP11-468E2.5 inhibits the JAK/STAT signaling pathway by targeting STAT5 and STAT6, thereby suppressing cell proliferation and promoting cell apoptosis in CRC.


2014 ◽  
Vol 16 (6) ◽  
pp. 787-794 ◽  
Author(s):  
Shui Wang ◽  
Yangnan Gu ◽  
Sophia G. Zebell ◽  
Lisa K. Anderson ◽  
Wei Wang ◽  
...  

2021 ◽  
Author(s):  
Fatemeh Gheidari ◽  
Ehsan Arefian ◽  
Mahboubeh Kabiri ◽  
Ehsan Seyedjafari ◽  
Ladan Teimoori-Toolabi ◽  
...  

Abstract Glioblastoma is aggressive and lethal brain cancer, which is incurable by cancer standard treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in glioblastoma and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools. ERBB is the most over-activated genetic pathway in glioblastoma patients, which is responsible for augmented cell proliferation and migration in glioblastoma multiforme (GBM). Here we overexpressed miR-429 using lentiviral vectors in GBM U-251 cells and observed that the expression level of several oncogenes of the ERBB pathway, EGFR, PIK3CA, PIK3CB, KRAS, and MYC significantly decreased; as shown by real-time PCR and western blotting. Using the luciferase assay, we showed that miR-429 directly targets MYC, BCL2, and EGFR. In comparison to scrambled control, miR-429 had a significant inhibitory effect on cell proliferation and migration as deduced from MTT and scratch wound assays and induced cell-cycle arrest in flow cytometry. Altogether miR-429 seems to be an efficient suppressor of the ERBB genetic signaling pathway and a potential therapeutic for glioblastoma.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 627-627
Author(s):  
Dong-Joon Min ◽  
Julia Meyer ◽  
Eva Martinez-Garcia ◽  
Josh Lauring ◽  
Jonathan D. Licht

Abstract Multiple myeloma (MM) is a malignancy of plasma cells characterized by frequent chromosomal translocations of the immunoglobulin heavy chain (IgH) locus. The multiple myeloma SET domain (MMSET) gene is a recurrent chromosomal partner in the t(4;14) translocation, and MMSET levels are elevated in these patients relative to other myeloma cases and normal cells. Previously, we showed that MMSET is a histone methyltransferase with specific activity for lysine 20 on histone H4 and acts as a transcriptional repressor when tethered to a model target gene. To reveal the function of MMSET in t(4;14) MM in vivo, we identified MMSET target genes in the KMS11 t(4;14) MM cell line. Chromatin from these cells was subjected to immunoprecipitation with a polyclonal anti-MMSET antibody in biological replicate, amplified by ligation-mediated PCR and hybridized to NimbleGen 2.7kB promoter arrays, which represent 24,659 human promoters. Data analysis using the MaxFour algorithm ranked putative binding sites based upon intensities of 4 consecutive probes. The top 2000 promoters identified from each experiment were combined to yield a list of 1,412 putative MMSET target genes. This list was analyzed using the DAVID program (david.abcc.ncifcrf.gov/). Genes bound by MMSET includes those implicated in antigen processing and presentation (p<8.7×10-4), cell cycle (p<2.2×10-3), the p53 signaling pathway (p<0.03) apoptosis (p<1.6×10-6) and DNA repair (p<3.3×10-4) Among genes bound by MMSET were XBP1, IRF2, and BCL6, all important transcription factors regulating B cell development. Real-time quantitative PCR validated MMSET binding in 6/6 promoters tested so far. To investigate the role of MMSET in transcriptional regulation, we profiled gene expression in KMS11 cells using Illumina arrays to determine the expression of MMSET bound genes. Nearly 50% of genes bound by MMSET had very low levels of expression (≤100, Range on arrays 10–18,000) while only 13% of genes bound by MMSET were expressed at high levels (>1000). This supports the notion that MMSET represses target genes in vivo. Functional annotation of genes bound by MMSET and expressed at low levels showed over-representation of genes implicated in toll-like receptor signaling pathway (p<2.8×10-3), cytokine-signaling (p<3.3×10-3) and JAK2/STAT signaling (p<0.08), transmembrane receptor function (p<4×10-8), and apoptosis (p<0.01), while those bound yet expressed at high levels were implicated in oxidative phosphorylation (p<3.9×10-4) and protein synthesis (p<4.1×10-6). The effects of MMSET on gene expression were further investigated using KMS11KO cells in which the rearranged MMSET allele was ablated by homologous recombination. RNA from KMS11 and KMS11KO cells was profiled by Illumina arrays and genes showing a significant change in gene expression were determined by significance analysis of microarray (SAM) testing with 1% of false discovery rate. Among the 720 genes bound by MMSET and expressed at a level of >100 in the wild-type KMS11 cells, 35 genes were up-regulated and 20 genes were down-regulated (>1.5 fold) in the KMS11KO cell line. Among the 692 genes bound by MMSET and expressed at a level of ≤100, 9 genes were up-regulated in KMS11KO cells. The up-regulated genes (presumably bound and repressed by MMSET) were categorized in cytokine receptor (p<0.02) and JAK2/STAT signaling pathway (p<0.05), nucleosome assembly (p<6×10-4), apoptosis (p<0.01), and cell differentiation (p<0.05). Collectively these data suggest that MMSET may interfere with signal transduction, chromatin modulation and apoptosis pathways involved in the terminal differentiation of the plasma cell. Intriguingly MMSET also bound and was associated with repression of RB1 and RBL2 suggesting a role of MMSET in cell cycle control. Chromatin immunoprecipitation analysis of a MMSET bound gene (ARHGAP25) revealed that MMSET binding was correlated with increased tri-methylation of H4K20, a repression-associated chromatin mark. MMSET binding of this promoter was decreased but still detectable in the KMS11KO cells. Collectively these data suggest that MMSET binds and represses many target genes in vivo. However MMSET could still bind to genes expressed at a high level and MMSET ablation was associated with activation of some MMSET target genes, suggesting that its role in gene regulation may be complex and potentially gene-specific.


2012 ◽  
Vol 227 (11) ◽  
pp. 3678-3692 ◽  
Author(s):  
Seung-Cheol Choi ◽  
Ji-Hyun Choi ◽  
Chi-Yeon Park ◽  
Chul-Min Ahn ◽  
Soon-Jun Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document