scholarly journals Critical Role of the Stress Chaperone GRP78/BiP in Tumor Proliferation, Survival, and Tumor Angiogenesis in Transgene-Induced Mammary Tumor Development

2008 ◽  
Vol 68 (2) ◽  
pp. 498-505 ◽  
Author(s):  
Dezheng Dong ◽  
Min Ni ◽  
Jianze Li ◽  
Shigang Xiong ◽  
Wei Ye ◽  
...  
2020 ◽  
Vol 8 (1) ◽  
pp. e000622
Author(s):  
Lydia Meziani ◽  
Marine Gerbé de Thoré ◽  
Pauline Hamon ◽  
Sophie Bockel ◽  
Ruy Andrade Louzada ◽  
...  

BackgroundMacrophages play pivotal roles in tumor progression and the response to anticancer therapies, including radiotherapy (RT). Dual oxidase (DUOX) 1 is a transmembrane enzyme that plays a critical role in oxidant generation.MethodsSince we found DUOX1 expression in macrophages from human lung samples exposed to ionizing radiation, we aimed to assess the involvement of DUOX1 in macrophage activation and the role of these macrophages in tumor development.ResultsUsing Duox1−/− mice, we demonstrated that the lack of DUOX1 in proinflammatory macrophages improved the antitumor effect of these cells. Furthermore, intratumoral injection of Duox1−/− proinflammatory macrophages significantly enhanced the antitumor effect of RT. Mechanistically, DUOX1 deficiency increased the production of proinflammatory cytokines (IFNγ, CXCL9, CCL3 and TNFα) by activated macrophages in vitro and the expression of major histocompatibility complex class II in the membranes of macrophages. We also demonstrated that DUOX1 was involved in the phagocytotic function of macrophages in vitro and in vivo. The antitumor effect of Duox1−/− macrophages was associated with a significant increase in IFNγ production by both lymphoid and myeloid immune cells.ConclusionsOur data indicate that DUOX1 is a new target for macrophage reprogramming and suggest that DUOX1 inhibition in macrophages combined with RT is a new therapeutic strategy for the management of cancers.


2019 ◽  
Vol 20 (5) ◽  
pp. 1237 ◽  
Author(s):  
Bhawna Sharma ◽  
Kalyan Nannuru ◽  
Sugandha Saxena ◽  
Michelle Varney ◽  
Rakesh Singh

Most breast cancer patients die due to bone metastasis. Although metastasis accounts for 5% of the breast cancer cases, it is responsible for most of the deaths. Sometimes even before the detection of a primary tumor, most of the patients have bone and lymph node metastasis. Moreover, at the time of death, breast cancer patients have the bulk of the tumor burden in their bones. Therapy options are available for the treatment of primary tumors, but there are minimal options for treating breast cancer patients who have bone metastasis. C-X-C motif chemokine receptor type 2 (CXCR2) receptor-mediated signaling has been shown to play a critical role during bone-related inflammations and its ligands C-X-C motif chemokine ligand 6 (CXCL6) and 8 (CXCL8) aid in the resorption of bone during bone metastasis. In this study, we tested the hypothesis that CXCR2 contributes to mammary tumor-induced osteolysis and bone metastasis. In the present study, we examined the role of both tumor cell-derived and host-derived CXCR2 in influencing mammary tumor cell bone metastasis. For understanding the role of tumor cell-derived CXCR2, we utilized Cl66 CXCR2 knockdown (Cl66-shCXCR2) and Cl66-Control cells (Cl66-Control) and observed a significant decrease in tumor growth and tumor-induced osteolysis in Cl66-shCXCR2 cells in comparison with the Cl66-Control cells. Next, for understanding the role of host-derived CXCR2, we utilized mice with genomic knockdown of CXCR2 (Cxcr2−/−) and injected Cl66-Luciferase (Cl66-Luc) or 4T1-Luciferase (4T1-Luc) cells. We observed decreased bone destruction and metastasis in the bone of Cxcr2−/− mice. Our data suggest the importance of both tumor cell- and host-derived CXCR2 signaling in the bone metastasis of breast cancer cells.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Gelareh Zadeh ◽  
Keyvan Koushan ◽  
Qian Baoping ◽  
Patrick Shannon ◽  
Abhijit Guha

Angiopoietins and Tie2 are angiogenic-specific ligand and receptor complex that have been shown to play a critical role in tumor angiogenesis. Angiopoietin-2 (Ang2) is one of four ligands for receptor Tie2 and it is the naturally occurring antagonist to Tie2, inhibiting the action of Angiopoietin-1 (Ang1). Over the last decade, significant research has focused on elucidating the role of Ang2 in cancer biology and its exact role in tumor angiogenesis remains elusive. In this study we have focused on establishing the role of Ang2 in angiogenesis of malignant astrocytomas. We have demonstrated that Ang2 significantly enhances the vascular growth of malignant astrocytomas and constant upregulation of Ang2 throughout all phases of tumor growth generates abnormal vascular structures that are not typically seen in human astrocytomas, suggesting that Ang2 plays a tumor stage-dependent role and is not a consistently elevated throughout all growth stages of malignant astroctyomas.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Michael C. Schmid ◽  
Judith A. Varner

Myeloid cells are a heterogeneous population of bone marrow-derived cells that play a critical role during growth and metastasis of malignant tumors. Tumors exhibit significant myeloid cell infiltrates, which are actively recruited to the tumor microenvironment. Myeloid cells promote tumor growth by stimulating tumor angiogenesis, suppressing tumor immunity, and promoting metastasis to distinct sites. In this review, we discuss the role of myeloid cells in promoting tumor angiogenesis. Furthermore, we describe a subset of myeloid cells with immunosuppressive activity (known as myeloid-derived suppressor cells). Finally, we will comment on the mechanisms regulating myeloid cell recruitment to the tumor microenvironment and on the potential of myeloid cells as new targets for cancer therapy.


2004 ◽  
Vol 14 (2) ◽  
pp. 333-340 ◽  
Author(s):  
J. Argüello-Ramírez ◽  
E. PÉREZ-CÁRDENAS ◽  
R. Delgado-Chávez ◽  
G. Solorza-Luna ◽  
S. Villa-Treviño ◽  
...  

Elevated expression of matrix metalloproteinases (MMPs) plays a critical role in extracellular matrix (EM) degradation in tumor development and prognosis of different human carcinomas. In cervical carcinoma (Ce Ca), the role of these proteinases in the biological development of this neoplasm is controversial. In the present study, we compared the secretion of MMP-2, MMP-3 and MMP-9 among 29 benign and premalignant cervical lesions (cervicitis and cervical intraepithelial neoplasias) and 46 tumoral explants of Ce Ca. The explants were cultured for 48 h. The gelatinases secreted into conditioned medium were revealed by zymography and quantified by densitometry. The results showed high levels of MMP-3 and MMP-9 in tumoral explants. In contrast, only the pro-MMP-2 was higher in benign cervical lesions, although both active and inactive MMP-2 species are associated with advanced clinical stages in tumoral samples, and only the secretion of MMP-3 was associated with unresponsiveness to radiotherapy. We can conclude that the expression of MMPs is related to the invasive process in Ce Ca and suggest that they may play a role in degradation of the EM during local invasion. In addition, MMP-3 secretion could be a marker of poor prognosis in Ce Ca.


Author(s):  
Xianjie Jiang ◽  
Jie Wang ◽  
Xiangying Deng ◽  
Fang Xiong ◽  
Shanshan Zhang ◽  
...  

Abstract Tumor angiogenesis is necessary for the continued survival and development of tumor cells, and plays an important role in their growth, invasion, and metastasis. The tumor microenvironment—composed of tumor cells, surrounding cells, and secreted cytokines—provides a conducive environment for the growth and survival of tumors. Different components of the tumor microenvironment can regulate tumor development. In this review, we have discussed the regulatory role of the microenvironment in tumor angiogenesis. High expression of angiogenic factors and inflammatory cytokines in the tumor microenvironment, as well as hypoxia, are presumed to be the reasons for poor therapeutic efficacy of current anti-angiogenic drugs. A combination of anti-angiogenic drugs and antitumor inflammatory drugs or hypoxia inhibitors might improve the therapeutic outcome.


Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 596 ◽  
Author(s):  
Haim Werner ◽  
Lena Lapkina-Gendler ◽  
Laris Achlaug ◽  
Karthik Nagaraj ◽  
Lina Somri ◽  
...  

Laron syndrome (LS), or primary growth hormone resistance, is a prototypical congenital insulin-like growth factor 1 (IGF1) deficiency. The recent epidemiological finding that LS patients do not develop cancer is of major scientific and clinical relevance. Epidemiological data suggest that congenital IGF1 deficiency confers protection against the development of malignancies. This ‘experiment of nature’ reflects the critical role of IGF1 in tumor biology. The present review article provides an overview of recently conducted genome-wide profiling analyses aimed at identifying mechanisms and signaling pathways that are directly responsible for the link between life-time low IGF1 levels and protection from tumor development. The review underscores the concept that ‘data mining’ an orphan disease might translate into new developments in oncology.


Angiology ◽  
2008 ◽  
Vol 60 (2) ◽  
pp. 242-253 ◽  
Author(s):  
Mehmet ßahin ◽  
Emel ßahin ◽  
Saadet Gümüşlü

Tumor angiogenesis is a process where new blood vessels are formed from preexisting ones, resulting in several pathologies. Solid tumors induce angiogenesis to obtain the required nutrients and oxygen. Otherwise, tumors do not grow beyond 2 to 3 mm in diameter. Cyclooxygenase-2, an inducible enzyme important in inflammation, catalyzes the production of prostanoids from arachidonic acid. Cyclooxygenase-2 plays an important role in several cancer types, including colorectal, gastric, prostate, breast, lung, and endometrial cancer. Besides, cyclooxygenase-2 has been implicated in the progression and angiogenesis of cancers. Cyclooxygenase-2 inhibitors have been used to block angiogenesis and tumor proliferation. In this review, the recent studies related to the role of cyclooxygenase-2 in several cancer types and tumor-induced angiogenesis were compiled.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1801-1801
Author(s):  
Katia Beider ◽  
Amnon Peled ◽  
Lola Weiss ◽  
Merav Leiba ◽  
Avichai Shimoni ◽  
...  

Abstract Abstract 1801 Background: Multiple myeloma (MM) is by large incurable neoplasm of plasma cells, characterized by accumulation in the bone marrow (BM), in close contact to cellular and extracellular matrix (ECM) components. Chemokine receptor CXCR4 is expressed by the majority of patients' MM cells. It promotes myeloma cell migration and homing to the BM compartment, supports the tumor cells survival and protects the myeloma cells from chemotherapy-induced apoptosis. Further investigation is required to define the specific molecular mechanisms regulated by the CXCR4/CXCL12 axis in MM. However, surface CXCR4 is commonly down-regulated in the MM cell lines. In order to overcome this limitation, the aim of the current study was to produce a reliable model for studying the functional role of high CXCR4 in MM by generating MM cell lines with stable expression of surface CXCR4. Results: To over-express CXCR4, we transduced CXCL12-expressing MM cell lines ARH77 and RPMI8226 with lentiviral vector and generated cell lines with high and stable levels of surface CXCR4. Enhanced CXCR4 expression significantly increased the in vitro survival and growth of the 2 MM cell lines in serum-deprivation conditions (p<0.01). Furthermore, elevated expression of surface CXCR4 prominently increased MM cells motility and promoted CXCL12-dependent transwell migration of the transduced MM cell lines. Highly CXCR4-expressing RPMI8226 and ARH77 cells demonstrated 40% migration in response to CXCL12 (50 ng/ml), versus only 0–5% migration of MM cells with low expression of surface CXCR4 (p<0.01). Furthermore, adhesion of MM cells to either ECM proteins or BMSCs localize the malignant PCs within the BM microenvironment, promote growth and survival of MM cells and play a critical role in myeloma bone disease and tumor invasion. In accordance, we observed induced adhesion of the transfected RPMI8226-CXCR4 cells to ECM components fibronectin and laminin and to BM fibroblasts. Moreover, we found that enhanced CXCR4 not only functionally activates, but rather significantly elevates the surface levels of VLA-4 integrin on the RPMI8226 cells. In addition, we found that CXCR4-expressing MM cells were less sensitive to melphalan- and bortezomib-induced apoptosis, when they were co-cultured with BM fibroblasts. Testing the molecular signaling pathways regulated by CXCR4, we found that elevated CXCR4 increased the basic level of pERK1/2 and pAKT in the MM cells, and promoted their prolonged activation in response to CXCL12 stimulation. Finally, the ability to produce colonies in the soft agar semi-solid culture reflects the tumorigenic capacity of cancer cells and cancer stem cells. Differentiated MM cells thus rarely produce colonies in soft agar. Here, we demonstrate that up regulation of CXCR4 promoted ARH77 and RPMI8226 colony formation, significantly increasing colonies number and size. Lastly, we determined the role of CXCR4 in MM tumor development in vivo. CXCR4-expressing ARH77 and RPMI8226 cells were subcutaneously injected into NOD/SCID mice. CXCR4-expressing cells, but not parental cell lines, produced detectable tumors already 10 days after the injection. Rapid tumor growth was further observed in both CXCR4-expressing cell lines. These findings indicate that CXCR4 provided aggressive phenotype and supported MM growth in vivo. Conclusions: Taken together, our findings clearly demonstrate the important pathophysiologic role of CXCR4 in MM development and progression. Furthermore, for the first time, we provide the evidence for CXCR4 oncogenic potential in MM, showing that CXCR4 promotes the clonogenic growth of MM cells. Our model may further serve to elucidate CXCR4-regulated molecular events potentially involved in the pathogenesis of MM, and strongly support targeting CXCR4 as therapeutic tool in MM. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document