Abstract P115: Novel patient avatar platform for oncology drug testing using 3D ex vivo models derived from fresh patient tumor tissues

Author(s):  
Nataliia Beztsinna ◽  
Fanny Grillet ◽  
Niels Meesters ◽  
Donny van der Meer ◽  
Lidia Daszkiewicz ◽  
...  
Lab on a Chip ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 312-325 ◽  
Author(s):  
M. Astolfi ◽  
B. Péant ◽  
M. A. Lateef ◽  
N. Rousset ◽  
J. Kendall-Dupont ◽  
...  

Micro-dissected tumor tissues (MDTs) are maintained alive on chip for several days and show promising results for personalized medicine applications.


2020 ◽  
Vol 138 ◽  
pp. S59
Author(s):  
N. Beztsinna ◽  
F. Grillet ◽  
A. Jariani ◽  
J. Overkamp ◽  
D. van der Meer ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3727
Author(s):  
Dafne Jacome Sanz ◽  
Juuli Raivola ◽  
Hanna Karvonen ◽  
Mariliina Arjama ◽  
Harlan Barker ◽  
...  

Background: Dysregulated lipid metabolism is emerging as a hallmark in several malignancies, including ovarian cancer (OC). Specifically, metastatic OC is highly dependent on lipid-rich omentum. We aimed to investigate the therapeutic value of targeting lipid metabolism in OC. For this purpose, we studied the role of PCSK9, a cholesterol-regulating enzyme, in OC cell survival and its downstream signaling. We also investigated the cytotoxic efficacy of a small library of metabolic (n = 11) and mTOR (n = 10) inhibitors using OC cell lines (n = 8) and ex vivo patient-derived cell cultures (PDCs, n = 5) to identify clinically suitable drug vulnerabilities. Targeting PCSK9 expression with siRNA or PCSK9 specific inhibitor (PF-06446846) impaired OC cell survival. In addition, overexpression of PCSK9 induced robust AKT phosphorylation along with increased expression of ERK1/2 and MEK1/2, suggesting a pro-survival role of PCSK9 in OC cells. Moreover, our drug testing revealed marked differences in cytotoxic responses to drugs targeting metabolic pathways of high-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC) PDCs. Our results show that targeting PCSK9 expression could impair OC cell survival, which warrants further investigation to address the dependency of this cancer on lipogenesis and omental metastasis. Moreover, the differences in metabolic gene expression and drug responses of OC PDCs indicate the existence of a metabolic heterogeneity within OC subtypes, which should be further explored for therapeutic improvements.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi221-vi222
Author(s):  
Gerhard Jungwirth ◽  
Tao Yu ◽  
Cao Junguo ◽  
Catharina Lotsch ◽  
Andreas Unterberg ◽  
...  

Abstract Tumor-organoids (TOs) are novel, complex three-dimensional ex vivo tissue cultures that under optimal conditions accurately reflect genotype and phenotype of the original tissue with preserved cellular heterogeneity and morphology. They may serve as a new and exciting model for studying cancer biology and directing personalized therapies. The aim of our study was to establish TOs from meningioma (MGM) and to test their usability for large-scale drug screenings. We were capable of forming several hundred TO equal in size by controlled reaggregation of freshly prepared single cell suspension of MGM tissue samples. In total, standardized TOs from 60 patients were formed, including eight grade II and three grade III MGMs. TOs reaggregated within 3 days resulting in a reducted diameter by 50%. Thereafter, TO size remained stable throughout a 14 days observation period. TOs consisted of largely viable cells, whereas dead cells were predominantly found outside of the organoid. H&E stainings confirmed the successful establishment of dense tissue-like structures. Next, we assessed the suitability and reliability of TOs for a robust large-scale drug testing by employing nine highly potent compounds, derived from a drug screening performed on several MGM cell lines. First, we tested if drug responses depend on TO size. Interestingly, drug responses to these drugs remained identical independent of their sizes. Based on a sufficient representation of low abundance cell types such as T-cells and macrophages an overall number of 25.000 cells/TO was selected for further experiments revealing FDA-approved HDAC inhibitors as highly effective drugs in most of the TOs with a mean z-AUC score of -1.33. Taken together, we developed a protocol to generate standardized TO from MGM containing low abundant cell types of the tumor microenvironment in a representative manner. Robust and reliable drug responses suggest patient-derived TOs as a novel drug testing model in meningioma research.


2020 ◽  
Vol 122 (6) ◽  
pp. 735-744 ◽  
Author(s):  
Ian R. Powley ◽  
Meeta Patel ◽  
Gareth Miles ◽  
Howard Pringle ◽  
Lynne Howells ◽  
...  

AbstractPreclinical models that can accurately predict outcomes in the clinic are much sought after in the field of cancer drug discovery and development. Existing models such as organoids and patient-derived xenografts have many advantages, but they suffer from the drawback of not contextually preserving human tumour architecture. This is a particular problem for the preclinical testing of immunotherapies, as these agents require an intact tumour human-specific microenvironment for them to be effective. In this review, we explore the potential of patient-derived explants (PDEs) for fulfilling this need. PDEs involve the ex vivo culture of fragments of freshly resected human tumours that retain the histological features of original tumours. PDE methodology for anti-cancer drug testing has been in existence for many years, but the platform has not been widely adopted in translational research facilities, despite strong evidence for its clinical predictivity. By modifying PDE endpoint analysis to include the spatial profiling of key biomarkers by using multispectral imaging, we argue that PDEs offer many advantages, including the ability to correlate drug responses with tumour pathology, tumour heterogeneity and changes in the tumour microenvironment. As such, PDEs are a powerful model of choice for cancer drug and biomarker discovery programmes.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 917-917
Author(s):  
Emma I Andersson ◽  
Leopold Sellner ◽  
Malgorzata Oles ◽  
Tea Pemovska ◽  
Paavo Pietarinen ◽  
...  

Abstract Introduction T-PLL is a mature post-thymic T-cell neoplasm with an aggressive clinical course (5-year overall survival 21%). Almost 75% of T-PLL cases harbor chromosome 14 translocations resulting in aberrant activation of the proto-oncogene TCL1A. Furthermore, in the majority of T-PLL cases the ATM gene is mutated or deleted, and recently it was reported that mutations in genes involved in the JAK-STAT pathway were found in 76% of T-PLL cases. Due to the rareness and aggressive nature of the disease, clinical trials are difficult to execute. By using a high-throughput ex vivo drug sensitivity and resistance testing (DSRT) platform covering 306 approved and investigational oncology drugs we systematically investigated the heterogeneity of drug responses in PLL-patients. As the impact of mutations on drug sensitivity is not well understood we aimed to identify relevant associations between the drug responses and genetic lesions in T-PLL patients. Methods Primary cells (MNCs) from seven T-PLL patients were obtained for drug screening. Samples were seeded in 384-well plates and 306 active substances were tested using a 10,000-fold concentration range resulting in a dose-response curve for each compound. Cell viability was measured after 72 h incubation and differential drug sensitivity scores (sDSS), representing leukemia-specific responses, were calculated by comparing patient samples to healthy donors. Hierarchical clustering of the drug responses was performed with Cluster 3.0 and Java Tree View. To assess the performance of the drug screening platform we also exchanged six samples with the German Cancer Research Center in Heidelberg for a comparison of results between two independent drug screening systems. To understand heterogeneous pathway dependencies, drug sensitivities were correlated with somatic genetic variants and recurrent chromosomal aberrations. Genetic characterization was performed by exome sequencing of tumor and matched healthy cells to profile known recurrent genetic variants (ATM, STAT5b, IL2RG, JAK1, JAK3) as well as CNVs (TCL1A translocations, ATM deletions, recurrent chromosomal aberrations). Results Four out of seven patient samples showed high sensitivity to small molecule BCL2 inhibitors navitoclax (IC50: 10-68nM) and ABT-199 (IC50: 14-45nM) and to HDAC inhibitors panobinostat and belinostat (IC50: 2-65nM). Intriguingly, the CDK inhibitor SNS-032 was effective in 6/7 patient samples (IC50: 7-95nM). SNS-032 inhibits Cdk2, Cdk7 and Cdk9, which control transcription of anti-apoptotic proteins including MCL1 and XIAP. As the AKT1/MTOR pathway is activated in many T-PLL patients due to expression of the TCL1A oncoprotein, it was interesting to observe that patient samples did not show any response to AKT inhibitors (MK-2206 and GDC-0068 IC50 values >1000 nM) nor to MTOR inhibitors (rapalogs temsirolimus and everolimus). Similarly, T-PLL cells were insensitive to JAK-inhibitors. Clustering of drug responses from T-PLL patients with primary AML and ALL patient samples revealed the drug response profiles to be specific for T-PLL patients (Figure). 6/7 patients clustered together while the only patient (PLL4) in our cohort with confirmed mutations in the JAK-STAT pathway genes STAT5b (P702S) and IL2RG (K315E) exhibited a non-sensitive response pattern when compared to other samples (Figure). Interestingly, exome sequencing did not reveal any JAK mutations in our PLL-cohort (n=5) nor additional STAT5b or IL2RG mutations in other patients except in this unresponsive patient. In the comparison between the platforms the correlation of the censored IC50 values from the 60 overlapping drugs was r=0.75. Similar fits of dose-response curves were seen for most drugs, although there were notable exceptions, which may be due to divergent culture conditions and day of read-out. Conclusions Ex vivo drug testing of primary patient cells has the potential to provide novel personalized drug candidates (such as BCL2, HDAC and CDK inhibitors) for T-PLL. The drug response pattern was T-PLL specific warranting further clinical testing. Drug screening, mutation analysis and RNA sequencing of additional patients is currently ongoing (n=20) to validate whether drug responses can be predicted based on the mutation profile or aberrant gene expression. Figure Clustering of T-PLL, AML and ALL patient samples based on DSRT results. Figure. Clustering of T-PLL, AML and ALL patient samples based on DSRT results. Disclosures Kallioniemi: Medisapiens: Consultancy, Membership on an entity's Board of Directors or advisory committees. Porkka:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Mustjoki:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15644-e15644
Author(s):  
Yuhong Xu ◽  
Anjie Zheng ◽  
Shanshan Jin ◽  
Xiaolong Chen

e15644 Background: All-Trans-Retinoid-Acid (ATRA) is a naturally occurring vitamin A metabolite that participates in many biological processes. Beside its highly potent effect of promoting terminal differentiation of acute promyelocytic leukemia blasts into mature granulocytes, there have been many other studies suggesting its activity on the myeloid derived suppressor cells (MDSCs) and tumor specific CD8+ T cells in animal models as well as using clinical samples. But the use of ATRA as an immune-oncological agent in solid tumor therapy has been limited by the very poor solubility of the compound, its fast metabolism, and very limited exposure achieved after oral administration. Methods: We prepared a new dosage form by encapsulating ATRA inside PEGylated liposomes. The liposomes were shown to accumulate inside solid tumor tissues and deliver more ATRA with longer duration. Results: The effect and dose response of the liposomal ATRA on CT26 murine tumor growth were examined, as well as specific molecular signatures concerning tumor infiltrating myeloid cells. Notably, there was significant higher expression of CD86 and lower expression of PD-L1. These myeloid cells had very low inhibitory effect on ex vivo activated T cells, while on the other hand could promote specific antigen presentation to amplify CD8+ T cells. Furthermore, the liposomal ATRA was also shown to synergize with anti-PD-1 treatment to result in more CD8 T cell distribution in the tumor tissues. Conclusions: These data may suggest an exciting opportunity for targeting MDSCs using liposomal ATRA for combination with T cell based therapeutics in cancer immunotherapy.


2014 ◽  
Vol 73 (Suppl 2) ◽  
pp. 370.4-371
Author(s):  
R. Biavasco ◽  
D. Belloni ◽  
C. Doglioni ◽  
L. Dagna ◽  
E. Ferrero ◽  
...  

2019 ◽  
Vol 14 (10) ◽  
pp. S689
Author(s):  
E. Marin ◽  
P. Duch ◽  
M. Gabasa ◽  
E. Urrea ◽  
R. Ikemori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document