‘In vitro clinical trials’ platform for drug testing in patient-derived ex vivo 3D cultured human tumor tissues

2020 ◽  
Vol 138 ◽  
pp. S59
Author(s):  
N. Beztsinna ◽  
F. Grillet ◽  
A. Jariani ◽  
J. Overkamp ◽  
D. van der Meer ◽  
...  
Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 92 ◽  
Author(s):  
Katja Tuomainen ◽  
Ahmed Al-Samadi ◽  
Swapnil Potdar ◽  
Laura Turunen ◽  
Minna Turunen ◽  
...  

In vitro cancer drug testing carries a low predictive value. We developed the human leiomyoma–derived matrix “Myogel” to better mimic the human tumor microenvironment (TME). We hypothesized that Myogel could provide an appropriate microenvironment for cancer cells, thereby allowing more in vivo–relevant drug testing. We screened 19 anticancer compounds, targeting the epidermal growth factor receptor (EGFR), MEK, and PI3K/mTOR on 12 head and neck squamous cell carcinoma (HNSCC) cell lines cultured on plastic, mouse sarcoma–derived Matrigel (MSDM), and Myogel. We applied a high-throughput drug screening assay under five different culturing conditions: cells in two-dimensional (2D) plastic wells and on top or embedded in Matrigel or Myogel. We then compared the efficacy of the anticancer compounds to the response rates of 19 HNSCC monotherapy clinical trials. Cancer cells on top of Myogel responded less to EGFR and MEK inhibitors compared to cells cultured on plastic or Matrigel. However, we found a similar response to the PI3K/mTOR inhibitors under all culturing conditions. Cells grown on Myogel more closely resembled the response rates reported in EGFR-inhibitor monotherapy clinical trials. Our findings suggest that a human tumor matrix improves the predictability of in vitro anticancer drug testing compared to current 2D and MSDM methods.


2020 ◽  
Vol 21 (24) ◽  
pp. 9724
Author(s):  
Valentina Giudice ◽  
Andrea Ghelli Luserna di Rorà ◽  
Bianca Serio ◽  
Roberto Guariglia ◽  
Maria Benedetta Giannini ◽  
...  

Adult acute lymphoblastic leukemia (ALL) with BCR-ABL1 rearrangement (Philadelphia chromosome, Ph) is a hematological aggressive disease with a fatal outcome in more than 50% of cases. Tyrosine kinase inhibitors (TKIs) targeting the activity of BCR-ABL1 protein have improved the prognosis; however, relapses are frequent because of acquired somatic mutations in the BCR-ABL1 kinase domain causing resistance to first, second and third generation TKIs. Axitinib has shown in vitro and ex vivo activity in blocking ABL1; however, clinical trials exploring its efficacy in ALL are missing. Here, we presented a 77-year-old male with a diagnosis of Ph positive ALL resistant to ponatinib and carrying a rare threonine to leucine (T315L) mutation on BCR-ABL1 gene. The patient was treated with axitinib at 5 mg/twice daily as salvage therapy showing an immediate although transient benefit with an overall survival of 9.3 months. Further dose-finding and randomized clinical trials are required to assess the real efficacy of axitinib for adult Ph positive ALL resistant to third generation TKIs.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3773-3773
Author(s):  
Nina Mohell ◽  
Charlotta Liljebris ◽  
Jessica Alfredsson ◽  
Ylva Lindman ◽  
Maria Uustalu ◽  
...  

Abstract Abstract 3773 Poster Board III-709 Introduction The tumor suppressor protein p53 induces cell cycle arrest and/or apoptosis in response to various forms of cellular stress, through transcriptional regulation of a large number of down stream target genes. p53 is frequently mutated in cancer, and cancer cells carrying defects in the p53 protein are often more resistant to conventional chemotherapy. Thus, restoration of the wild type function to mutant p53 appears to be a new attractive strategy for cancer therapy. APR-246 is a novel small molecule quinuclidinone compound that has been shown to reactivate non-functional p53 and induce apoptosis. Although the exact molecular mechanism remains to be determined, recent results suggest that an active metabolite of APR-246 alkylates thiol groups in the core domain of p53, which promotes correct folding of p53 and induces apoptosis (Lambert et al., Cancer Cell 15, 2009). Currently, APR-246 is in Phase I/IIa clinical trials for hematological malignancies and prostate cancer. In the present abstract results from in vitro, ex vivo and in vivo preclinical studies with APR-246 are presented. Results The lead compound of APR-246, PRIMA-1 (p53 reactivation and induction of massive apoptosis), was originally identified by a cellular screening of the NCI library for low molecular weight compounds (Bykov et al., Nat. Med., 8, 2002). Further development and optimization of PRIMA-1 led to the discovery of the structural analog APR-246 (PRIMA-1MET), with improved drug like and preclinical characteristics. In in vitro experiments APR-246 reduced cell viability (WST-1 assay) in a large number of human cancer cell lines with various p53 status, including several leukemia (CCRF-CEM, CEM/VM-1, KBM3), lymphoma (U-937 GTP, U-937-vcr), and myeloma (RPMI 8226/S, 8226/dox40, 8226/LR5) cell lines, as well as many solid cancer cell lines, including osteosarcoma (SaOS-2, SaOS-2-His273,U-2OS), prostate (PC3, PC3-His175, 22Rv1), breast (BT474, MCF-7, MDA-MB-231), lung (H1299, H1299-His175) and colon cancer (HT-29). In human osteosarcoma cell lines APR-246 reduced cell viability and induced apoptosis (FLICA caspase assay) in a concentration dependent manner being more potent in the p53 mutant (SaOS-2-His273) than in the parental p53 null (SaOS-2) cells. The IC50 values (WST-1 assay) were 14 ± 3 and 27 ± 5 μM, respectively (n=35). In in vivo subcutaneous xenograft studies in SCID (severe combined immunodeficiency) mice APR-246 reduced growth of p53 mutant SaOS-2-His273 cells in a dose-dependent manner, when injected i.v. twice daily with 20 -100 mg/kg (64 – 76% inhibition). An in vivo anticancer effect of APR-246 was also observed in hollow-fiber test with NMRI mice using the acute myeloid leukemia (AML) cell line MV-4-11. An ex vivo cytotoxic effect of APR-246 and/or its lead compound PRIMA-1 has also been shown in primary cells from AML and CLL (chronic lymphocytic leukemia) patients, harbouring both hemizygously deleted p53 as well as normal karyotype (Nahi et al., Br. J. Haematol., 127, 2004; Nahi et al., Br. J. Haematol., 132, 2005; Jonsson-Videsater et al., abstract at this meeting). APR-246 was also tested in a FMCA (fluorometric microculture assay) test using normal healthy lymphocytes (PBMC) and cancer lymphocytes (CLL). It was 4-8 fold more potent in killing cancer cells than normal cells, indicating a favorable therapeutic index. This is in contrast to conventional cytostatics that often show negative ratio in this test. Furthermore, when tested in a well-defined panel of 10 human cancer cell lines consisting of both hematological and solid cancer cell lines, the cytotoxicity profile/activity pattern of APR-246 differed from common chemotherapeutic drugs (correlation coefficient less than 0.4), suggesting a different mechanism of action. Conclusion In relevant in vitro, in vivo and ex vivo cancer models, APR-246 showed unique pharmacological properties in comparison with conventional cytostatics, by being effective also in cancer cells with p53 mutations and by demonstrating tumor specificity. Moreover, in experimental safety/toxicology models required to start clinical trials, APR-246 was non toxic at the predicted therapeutic plasma concentrations. Thus, APR-246 appears to be a promising novel anticancer compound that may specifically target cancer cells in patients with genetic abnormality associated with poor prognosis. Disclosures: Mohell: Aprea AB: Employment. Liljebris:Aprea AB: Employment. Alfredsson:Aprea AB: Employment. Lindman:Aprea AB: Employment. Uustalu:Aprea AB: Employment. Wiman:Aprea AB: Co-founder, shareholder, and member of the board. Uhlin:Aprea AB: Employment.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 312-325 ◽  
Author(s):  
M. Astolfi ◽  
B. Péant ◽  
M. A. Lateef ◽  
N. Rousset ◽  
J. Kendall-Dupont ◽  
...  

Micro-dissected tumor tissues (MDTs) are maintained alive on chip for several days and show promising results for personalized medicine applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Karen W. Buckheit ◽  
Robert W. Buckheit

Significant advancements in topical microbicide development have occurred since the prevention strategy was first described as a means to inhibit the sexual transmission of HIV-1. The lack of clinical efficacy of the first generation microbicide products has focused development attention on specific antiretroviral agents, and these agents have proven partially successful in human clinical trials. With greater understanding of vaginal and rectal virus infection, replication, and dissemination, better microbicide products and delivery strategies should result in products with enhanced potency. However, a variety of development gaps exist which relate to product dosing, formulation and delivery, and pharmacokinetics and pharmacodynamics which must be better understood in order to prioritize microbicide products for clinical development. In vitro, ex vivo, and in vivo models must be optimized with regard to these development gaps in order to put the right product at the right place, at the right time, and at the right concentration for effective inhibition of virus transmission. As the microbicide field continues to evolve, we must harness the knowledge gained from unsuccessful and successful clinical trials and development programs to continuously enhance our preclinical development algorithms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lisa DiNatale ◽  
Jolanta Idkowiak-Baldys ◽  
Young Zhuang ◽  
Anthony Gonzalez ◽  
Thomas J. Stephens ◽  
...  

Topical antiaging products are often a first-line intervention to counter visible signs of facial photoaging, aiming for sustained cosmetic improvement. However, prolonged application of a single active topical compound was observed clinically to lead to a plateau effect in improving facial photoaging. In view of this, we set out to reduce this effect systematically using a multi-tiered approach with laboratory evidence and clinical trials. The objective of the study was to evaluate the effects of active topical ingredients applied either alone, in combination, or in a rotational manner on modulation of facial photoaging. The study methodology included in vitro, organotypic, and ex vivo skin explants; in vivo biopsy study; as well as clinical trials. We demonstrate for the first time that a pair of known antiaging ingredients applied rotationally, on human dermal fibroblasts, maximized pro-collagen I production. Indeed, rotational treatment with retinol and phytol/glycolic acid (PGA) resulted in better efficacy than application of each active ingredient alone as shown by explants and in vivo biopsy study, with penetration of active ingredients confirmed by Raman spectroscopy. Furthermore, two split-face, randomized, double-blinded clinical trials were conducted, one for 12 months to compare treated vs. untreated and the other for 6 months followed by a 2-month regression to compare treated vs. commercially marketed products. In both studies, rotational regimen showed superior results to its matching comparison as assessed by clinical grading and image analysis of crow's feet wrinkles. In conclusion, rotational regimen using retinol and PGA is effective in treating facial photoaging signs with long-lasting benefits.


2021 ◽  
Author(s):  
Moataz Dowaidar

siRNA-based gene therapy has gained interest in recent decades. Nanocarriers can be used to deliver rapid and efficient siRNA to tumor cells, suppressing gene expression. Some RNAi-based therapies are presently undergoing clinical trials. Clinical trials to preserve and distribute siRNA are increasingly focused on nanoformulations, and their safety has been promising. How nanocarriers avoid immune clearance and extend their circulation in the body is a key study topic for scientists.Most research relies on EPR-mediated passive targeting. However, as the MPS system sequesters most nanocarriers, the E PR effect can not be administered successfully in mice, which is a big human concern. Novel targeted approaches are desperately needed to accumulate siRNA in tumor tissues. In vitro and animal models, a number of TME-responsive siRNA nanocarriers were examined. Clinical nanomedicine is generally simple in structure and easy to mass-produce while preserving safety and effectiveness.It will require the collaborative efforts of materials scientists, basic medical scientists, and clinicians to develop the design of the ideal siRNA delivery vector, the authors suggest. The authors suggest that multimodal combination therapy has a stronger therapeutic impact on malignancies than a single therapy paradigm and might be "over-designed" for therapeutic usage. The study was published in Cancer Research.


Oncology ◽  
1975 ◽  
Vol 31 (5-6) ◽  
pp. 257-272 ◽  
Author(s):  
A. Billiau ◽  
J.J. Cassiman ◽  
D. Willems ◽  
M. Verhelst ◽  
H. Heremans
Keyword(s):  

2021 ◽  
Vol 22 (7) ◽  
pp. 3483
Author(s):  
Colin Rae ◽  
Francesco Amato ◽  
Chiara Braconi

In the search for the ideal model of tumours, the use of three-dimensional in vitro models is advancing rapidly. These are intended to mimic the in vivo properties of the tumours which affect cancer development, progression and drug sensitivity, and take into account cell–cell interactions, adhesion and invasiveness. Importantly, it is hoped that successful recapitulation of the structure and function of the tissue will predict patient response, permitting the development of personalized therapy in a timely manner applicable to the clinic. Furthermore, the use of co-culture systems will allow the role of the tumour microenvironment and tissue–tissue interactions to be taken into account and should lead to more accurate predictions of tumour development and responses to drugs. In this review, the relative merits and limitations of patient-derived organoids will be discussed compared to other in vitro and ex vivo cancer models. We will focus on their use as models for drug testing and personalized therapy and how these may be improved. Developments in technology will also be considered, including the use of microfluidics, 3D bioprinting, cryopreservation and circulating tumour cell-derived organoids. These have the potential to enhance the consistency, accessibility and availability of these models.


2021 ◽  
pp. FDD62
Author(s):  
Kylie G Nairon ◽  
Aleksander Skardal

Bioengineered in vitro models have advanced from 2D cultures and simple 3D cell aggregates to more complex organoids and organ-on-a-chip platforms. This shift has been substantial in cancer research; while simple systems remain in use, multi-tissue type tumor and tissue chips and patient-derived tumor organoids have grown rapidly. These more advanced models offer new tools to cancer researchers based on human tumor physiology and the potential for interactions with nontumor tissue physiology while avoiding critical differences between human and animal biology. In this focused review, the authors discuss the importance of organoid and organ-on-a-chip platforms, with a particular focus on modeling cancer, to highlight oncology-focused in vitro model platform technologies that improve upon the simple 2D cultures and 3D spheroid models of the past.


Sign in / Sign up

Export Citation Format

Share Document