Abstract 5603: Aryl hydrocarbon receptor, a receptor for environmental pollutants, promotes tumorigenesis via intestine-specific homeobox expression in hepatocellular carcinoma

Author(s):  
Li-Ting Wang ◽  
Shen-Nien Wang ◽  
Shih-Hsien Hsu
2018 ◽  
Vol 19 (12) ◽  
pp. 3762 ◽  
Author(s):  
Anaïs Wakx ◽  
Margaux Nedder ◽  
Céline Tomkiewicz-Raulet ◽  
Jessica Dalmasso ◽  
Audrey Chissey ◽  
...  

The human placenta is an organ between the blood of the mother and the fetus, which is essential for fetal development. It also plays a role as a selective barrier against environmental pollutants that may bypass epithelial barriers and reach the placenta, with implications for the outcome of pregnancy. The aryl hydrocarbon receptor (AhR) is one of the most important environmental-sensor transcription factors and mediates the metabolism of a wide variety of xenobiotics. Nevertheless, the identification of dietary and endogenous ligands of AhR suggest that it may also fulfil physiological functions with which pollutants may interfere. Placental AhR expression and activity is largely unknown. We established the cartography of AhR expression at transcript and protein levels, its cellular distribution, and its transcriptional activity toward the expression of its main target genes. We studied the profile of AhR expression and activity during different pregnancy periods, during trophoblasts differentiation in vitro, and in a trophoblast cell line. Using diverse methods, such as cell fractionation and immunofluorescence microscopy, we found a constitutive nuclear localization of AhR in every placental model, in the absence of any voluntarily-added exogenous activator. Our data suggest an intrinsic activation of AhR due to the presence of endogenous placental ligands.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 589 ◽  
Author(s):  
Christoph F. A. Vogel ◽  
Yasuhiro Ishihara ◽  
Claire E. Campbell ◽  
Sarah Y. Kado ◽  
Aimy Nguyen-Chi ◽  
...  

The aryl hydrocarbon receptor (AhR) is known for mediating the toxicity of environmental pollutants such as dioxins and numerous dioxin-like compounds, and is associated with the promotion of various malignancies, including lymphoma. The aryl hydrocarbon receptor repressor (AhRR), a ligand-independent, transcriptionally inactive AhR-like protein is known to repress AhR signaling through its ability to compete with the AhR for dimerization with the AhR nuclear translocator (ARNT). While AhRR effectively blocks AhR signaling, several aspects of the mechanism of AhRR’s functions are poorly understood, including suppression of inflammatory responses and its putative role as a tumor suppressor. In a transgenic mouse that overexpresses AhRR (AhRR Tg) we discovered that these mice suppress 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)- and inflammation-induced tumor growth after subcutaneous challenge of EL4 lymphoma cells. Using mouse embryonic fibroblasts (MEF) we found that AhRR overexpression suppresses the AhR-mediated anti-apoptotic response. The AhRR-mediated inhibition of apoptotic resistance was associated with a suppressed expression of interleukin (IL)-1β and cyclooxygenase (COX)-2, which was dependent on activation of protein kinase A (PKA) and the CAAT-enhancer-binding protein beta (C/EBPβ). These results provide mechanistic insights into the role of the AhRR to suppress inflammation and highlight the AhRR as a potential therapeutic target to suppress tumor growth.


2014 ◽  
Vol 32 (7) ◽  
pp. 1246-1253 ◽  
Author(s):  
Maliheh Parsa ◽  
Seyed Nasser Ostad ◽  
Seyed Mohammad Hossein Noori Moogahi ◽  
Mohammad Bayat ◽  
Mohammad Hossein Ghahremani

Objective: Polycyclic aromatic hydrocarbons (PAHs) are potent environmental pollutants. Benzo[α]pyrene (B[α]P) is the major compound of PAHs that acts by activating aryl hydrocarbon receptor (AhR) in cells. B[α]P is a known carcinogen and an immunotoxicant; however, its role with regard to nuclear factor of activated T cell (NFAT) pathway is unclear. AhR and NFAT signaling pathways have common roles in pathological functions in immunotoxicity and lung cancer. In this study, the effect of AhR activation on expression and signaling cross talk of AhR and NFATc1 pathways in mouse lung tissue has been investigated. Methods: Swiss albino mice were randomly allocated to five groups and administered with cyclosporin A (CsA) and B[α]P for seven constitutive days. Animals were then killed, and lung tissues were obtained after washing the whole blood. Paraffin-embedded blocks were prepared, and 5 µm sections were cut for histopathological and immunohistochemical assessments. The results were scored by observer and digitally analyzed using ImageJ software. Results: Our data showed that CsA administration resulted in a significant reduction of AhR expression. This effect was partly blocked in mice coadministrated with B[α]P and CsA. NFATc1 expression was also reduced in CsA-treated animals. Furthermore, CsA inhibited the pathological effects of B[α]P in mouse lung tissue. Conclusion: AhR expression is dependent on NFATc1 activation, and NFATc1 inhibition remarkably decreases AhR expression. However, it seems that total expression of NFATc1 is not dependent on AhR expression or activation. Moreover, CsA can prevent B[α]P-induced lung tissue damage, and it remarkably decreases NFATc1 expression. The results from this study point toward the molecular interactions of AhR and NFATc1 activation in lung tissue and the benefit of CsA treatment in B[α]P-induced lung damage.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243842
Author(s):  
Silvia Diani-Moore ◽  
Tiago Marques Pedro ◽  
Arleen B. Rifkind

Activation of the aryl hydrocarbon receptor (AHR) by the environmental toxin dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) causes diverse toxicities, including thymus atrophy and hepatosteatosis. The mechanisms by which AHR activation by TCDD leads to these toxicities are not fully understood. Here we studied the effects of TCDD on a major energy pathway, glycolysis, using the chick embryo close to hatching, a well-established model for studying dioxin toxicity. We showed that 24 hr of TCDD treatment causes changes in glycolysis in both thymus and liver. In thymus glands, TCDD decreased mRNAs for glycolytic genes and glucose transporters, glycolytic indices and levels of IL7 mRNA, phosphorylated AKT (pAKT) and HIF1A, stimulators of glycolysis and promoters of survival and proliferation of thymic lymphocytes. In contrast, in liver, TCDD increased mRNA levels for glycolytic genes and glucose transporters, glycolytic endpoints and pAKT levels. Similarly, increases by TCDD in mRNA levels for glycolytic genes and glucose transporters in human primary hepatocytes showed that effects in chick embryo liver pertain also to human cells. Treatment with the glycolytic inhibitor 2-deoxy-d-glucose exacerbated the effects on thymus atrophy by TCDD, supporting a role for decreased glycolysis in thymus atrophy by TCDD, but did not prevent hepatosteatosis. NAD+ precursors abolished TCDD effects on glycolytic endpoints in both thymus and liver. In summary, we report here that dioxin disrupts glycolysis mediated energy metabolism in both thymus and liver, and that it does so in opposite ways, decreasing it in the thymus and increasing it in the liver. Further, the findings support NAD+ boosting as a strategy against metabolic effects of environmental pollutants such as dioxins.


Oncotarget ◽  
2018 ◽  
Vol 9 (102) ◽  
pp. 37807-37807
Author(s):  
Li-Ting Wang ◽  
Shyh-Shin Chiou ◽  
Chee-Yin Chai ◽  
Edward Hsi ◽  
Shen-Nien Wang ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 7489-7501 ◽  
Author(s):  
Li-Ting Wang ◽  
Shyh-Shin Chiou ◽  
Chee-Yin Chai ◽  
Edward Hsi ◽  
Shen-Nien Wang ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9258
Author(s):  
Hevna Dhulkifle ◽  
Abdelali Agouni ◽  
Asad Zeidan ◽  
Mohammed Saif Al-Kuwari ◽  
Aijaz Parray ◽  
...  

Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.


2021 ◽  
Vol 22 (8) ◽  
pp. 4199
Author(s):  
Kanyarat Udompornpitak ◽  
Thansita Bhunyakarnjanarat ◽  
Awirut Charoensappakit ◽  
Cong Phi Dang ◽  
Wilasinee Saisorn ◽  
...  

Fc gamma receptor IIb (FcgRIIb) is the only inhibitory-FcgR in the FcgR family, and FcgRIIb-deficient (FcgRIIb−/−) mice develop a lupus-like condition with hyper-responsiveness against several stimulations. The activation of aryl hydrocarbon receptor (Ahr), a cellular environmental sensor, might aggravate activity of the lupus-like condition. As such, 1,4-chrysenequinone (1,4-CQ), an Ahr-activator, alone did not induce supernatant cytokines from macrophages, while the 24 h pre-treatment by lipopolysaccharide (LPS), a representative inflammatory activator, prior to 1,4-CQ activation (LPS/1,4-CQ) predominantly induced macrophage pro-inflammatory responses. Additionally, the responses from FcgRIIb−/− macrophages were more prominent than wild-type (WT) cells as determined by (i) supernatant cytokines (TNF-α, IL-6, and IL-10), (ii) expression of the inflammation associated genes (NF-κB, aryl hydrocarbon receptor, iNOS, IL-1β and activating-FcgRIV) and cell-surface CD-86 (a biomarker of M1 macrophage polarization), and (iii) cell apoptosis (Annexin V), with the lower inhibitory-FcgRIIb expression. Moreover, 8-week-administration of 1,4-CQ in 8 week old FcgRIIb−/− mice, a genetic-prone lupus-like model, enhanced lupus characteristics as indicated by anti-dsDNA, serum creatinine, proteinuria, endotoxemia, gut-leakage (FITC-dextran), and glomerular immunoglobulin deposition. In conclusion, an Ahr activation worsened the disease severity in FcgRIIb−/− mice possibly through the enhanced inflammatory responses. The deficiency of inhibitory-FcgRIIb in these mice, at least in part, prominently enhanced the pro-inflammatory responses. Our data suggest that patients with lupus might be more vulnerable to environmental pollutants.


2021 ◽  
Vol 22 (23) ◽  
pp. 12715
Author(s):  
Ji-Young Um ◽  
Bo-Young Chung ◽  
Han-Bi Kim ◽  
Jin-Cheol Kim ◽  
Chun-Wook Park ◽  
...  

It is known that DNA hypomethylation of aryl hydrocarbon receptor repressor (AhRR), one of the epigenetic markers of environmental pollutants, causes skin diseases. However, the function and mechanisms are still unknown. We aimed to determine whether AhRR is hypomethylated in PBMC of psoriasis patients, as well as to examine the expression of psoriasis-related inflammatory cytokines and antimicrobial peptides after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment in HaCaT cells overexpressing or silencing AhRR. AhRR was determined by qPCR, Western blot, immunohistochemistry, and immunocytochemistry in skin tissue and HaCaT cells. DNA methylation of AhRR was performed by Infinium Human Methylation450 BeadChip in PBMC of psoriasis patients and methylation-specific PCR (MSP) in HaCaT cells. NF-κB pp50 translocation and activity were performed by immunocytochemistry and luciferase reporter assay, respectively. We verified AhRR gene expression in the epidermis from psoriasis patients and healthy controls. AhRR hypomethylation in PBMC of psoriasis patients and pAhRR-HaCaT cells was confirmed. The expression level of AhRR was increased in both TCDD-treated HaCaT cells and pAhRR-HaCaT cells. NF-κB pp50 translocation and activity increased with TCDD. Our results showed that AhRR was hypomethylated and overexpressed in the lesional skin of patients with psoriasis, thereby increasing AhRR gene expression and regulating pro-inflammatory cytokines through the NF-κB signaling pathway in TCDD-treated HaCaT cells.


Sign in / Sign up

Export Citation Format

Share Document