scholarly journals Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair

2011 ◽  
Vol 194 (6) ◽  
pp. 469-480 ◽  
Author(s):  
Barbora Dvořánková ◽  
Pavol Szabo ◽  
Lukas Lacina ◽  
Peter Gal ◽  
Jana Uhrova ◽  
...  
Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 13
Author(s):  
Kyung Min Yoo ◽  
Sean V. Murphy ◽  
Aleksander Skardal

Hydrogels have played a significant role in many applications of regenerative medicine and tissue engineering due to their versatile properties in realizing design and functional requirements. However, as bioengineered solutions are translated towards clinical application, new hurdles and subsequent material requirements can arise. For example, in applications such as cell encapsulation, drug delivery, and biofabrication, in a clinical setting, hydrogels benefit from being comprised of natural extracellular matrix-based materials, but with defined, controllable, and modular properties. Advantages for these clinical applications include ultraviolet light-free and rapid polymerization crosslinking kinetics, and a cell-friendly crosslinking environment that supports cell encapsulation or in situ crosslinking in the presence of cells and tissue. Here we describe the synthesis and characterization of maleimide-modified hyaluronic acid (HA) and gelatin, which are crosslinked using a bifunctional thiolated polyethylene glycol (PEG) crosslinker. Synthesized products were evaluated by proton nuclear magnetic resonance (NMR), ultraviolet visibility spectrometry, size exclusion chromatography, and pH sensitivity, which confirmed successful HA and gelatin modification, molecular weights, and readiness for crosslinking. Gelation testing both by visual and NMR confirmed successful and rapid crosslinking, after which the hydrogels were characterized by rheology, swelling assays, protein release, and barrier function against dextran diffusion. Lastly, biocompatibility was assessed in the presence of human dermal fibroblasts and keratinocytes, showing continued proliferation with or without the hydrogel. These initial studies present a defined, and well-characterized extracellular matrix (ECM)-based hydrogel platform with versatile properties suitable for a variety of applications in regenerative medicine and tissue engineering.


2008 ◽  
Vol 87 (6) ◽  
pp. 548-552 ◽  
Author(s):  
D.E. Johns ◽  
M.E. Wong ◽  
K.A. Athanasiou

Tissue-engineering of the temporomandibular joint (TMJ) disc aims to provide patients with TMJ disorders an option to replace diseased tissue with autologous, functional tissue. This study examined clinically relevant cell sources by comparing costal chondrocytes, dermal fibroblasts, a mixture of the two, and TMJ disc cells in a scaffoldless tissue-engineering approach. It was hypothesized that all constructs would produce matrix relevant to the TMJ disc, but the mixture constructs were expected to appear most like the TMJ disc constructs. Costal chondrocyte and mixture constructs were morphologically and biochemically superior to the TMJ disc and dermal fibroblast constructs, and their compressive properties were not significantly different. Costal chondrocyte constructs produced almost 40 times more collagen and 800 times more glycosaminoglycans than did TMJ constructs. This study demonstrates the ability of costal chondrocytes to produce extracellular matrix that may function in a TMJ disc replacement.


1991 ◽  
Vol 252 ◽  
Author(s):  
Eugene Bell ◽  
Sumi Scott

ABSTRACTTwo approaches to the reconstitution of tissues and organs are reviewed. The first consists of imitating the architecture of actual tissues and organs by combining cultured specialized cells with extracellular matrix components to produce a connective tissue substrate on or in which epithelial, mesothelial or endothelial cells can be plated or seeded and subsequently differentiate into mono or multilayered tissues and other structures. The second consists of providing an acellular framework of extracellular matrix constituents that can be occupied by adjacent host tissues after implantation in vivo and be remodeled by them to resemble the host tissues it is designed to replace. A paradigm for events in vivo, designed to study the process of remodeling of acellular matrices in vitro has been developed. The living skin equivalent (LSE), an example of a product fabricated using the first approach to tissue engineering, has been adapted to study events of extracellular matrix remodeling, relevent to the second approach to tissue engineering. After creating a disc shaped wound bed in an LSE, the wound is filled with a collagen matrix with or without added supplements and the process of epidermal wound closure and associated events in the dermis are followed. It is shown that fibroblast conditioned medium or a simple molecule such as ascorbic acid, added with no additional growth factors to the collagen matrix used to fill the wound bed, strongly stimulates the process of repair. Dermal fibroblasts from the adjacent tissue invade the collagen lattice that forms in the wound bed, and keratinocytes recruited from the wound edge overgrow the new dermal tissue. The applicability of the paradigm to the repair of vascular and other tissues will be discussed and approaches to optimizing the composition of acellular constructs considered.


2018 ◽  
Author(s):  
Antonios Keirouz ◽  
Giuseppino Fortunato ◽  
Anthony Callanan ◽  
Norbert Radacsi

Scaffolds and implants used for tissue engineering need to be adapted for their mechanical properties with respect to their environment within the human body. Therefore, a novel composite for skin tissue engineering is presented by use of blends of Poly(vinylpyrrolidone) (PVP) and Poly(glycerol sebacate) (PGS) were fabricated via the needleless electrospinning technique. The formed PGS/PVP blends were morphologically, thermochemically and mechanically characterized. The morphology of the developed fibers related to the concentration of PGS, with high concentrations of PGS merging the fibers together plasticizing the scaffold. The tensile modulus appeared to be affected by the concentration of PGS within the blends, with an apparent decrease in the elastic modulus of the electrospun mats and an exponential increase of the elongation at break. Ultraviolet (UV) crosslinking of PGS/PVP significantly decreased and stabilized the wettability of the formed fiber mats, as indicated by contact angle measurements. In vitro examination showed good viability and proliferation of human dermal fibroblasts over the period of a week. The present findings provide important insights for tuning the elastic properties of electrospun material by incorporating this unique elastomer, as a promising future candidate for skin substitute constructs.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Elena Antinori ◽  
Marco Contardi ◽  
Giulia Suarato ◽  
Andrea Armirotti ◽  
Rosalia Bertorelli ◽  
...  

AbstractMycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.


Sign in / Sign up

Export Citation Format

Share Document