Overexpression of a Laccase with Dye Decolorization Activity from Bacillus sp. Induced in Escherichia coli

2017 ◽  
Vol 27 (4) ◽  
pp. 217-227 ◽  
Author(s):  
Haipeng Guo ◽  
Bingsong Zheng ◽  
Dean Jiang ◽  
Wensheng Qin

Laccases from bacteria have been widely studied in the past 2 decades due to the higher growth rate of bacteria and their excellent thermal and alkaline pH stability. In this study, a novel laccase gene was cloned from<i> Bacillus</i> sp., analyzed, and functionally expressed in<i> Escherichia coli</i>. The laccase was highly induced in the <i>E. coli</i> expression system with a maximum intracellular activity of 16 U mg<sup>-1</sup> protein. The optimal temperature and pH of the purified laccase were 40°C and 4.6, respectively, when ABTS (2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonate]) was used as the substrate. The purified laccase showed high stability in the pH range of 3.0-9.0, and retained more than 70% of its activity after 24 h of incubation at 40°C with a pH value of 9.0. Furthermore, the enzyme exhibited extremely high temperature and ion metal tolerance. The half-life of the purified laccase at 70°C was 15.9 h. The purified laccase could efficiently decolorize 3 chemical dyes, especially in the presence of ABTS as a mediator. The high production of this laccase in<i> E. coli</i> and exceptional characteristics of the recombinant enzyme protein make it a promising candidate for industrial applications.

2021 ◽  
Vol 55 (5-6) ◽  
pp. 619-627
Author(s):  
HÜLYA KUDUĞ CEYLAN ◽  
YAKUP ULUSU ◽  
SEMA BILGIN ◽  
İSA GÖKÇE

Endoglucanases randomly hydrolyse the cellulose chains by acting upon internal β-1,4-D-glycosidic bonds and are used extensively in industrial applications. In this study, bacterial endoglucanase gene yhfE was obtained by PCR, using primers based on genomic sequences of Bacillus subtilis strains. 1041 bp DNA fragment of yhfE was cloned into Escherichia coli DH5α through the use of pTolT expression plasmid. PCR, restriction enzyme analysis and DNA sequencing were performed in order to confirm the cloning. E. coli BL21-AI cells expressed the yhfE after induction at 0.04% of arabinose concentration for 4 h. The expected 38.7 kDa size yhfE protein after digestion with thrombin of the His-tagged fusion protein (yhfE-TolAIII) was visualized by SDS-PAGE. The yhfE-TolAIII production yield was approximately 82 mg/L. The recombinant yhfE was characterized by MALDI-TOF mass spectrometry and CD analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


2006 ◽  
Vol 188 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
Paul W. King ◽  
Matthew C. Posewitz ◽  
Maria L. Ghirardi ◽  
Michael Seibert

ABSTRACT Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.


2021 ◽  
Vol 2 (2) ◽  
pp. 19-25
Author(s):  
Hugo V. C. Oliveira ◽  
Spartaco Astolfi-Filho ◽  
Edmar V. Andrade

Antisense oligonucleotides exhibit high potential for use as therapeutic agents. '10-23' DNAzymes are antisense molecules with a high chemical stability and catalytic efficiency. In the present study, we developed a phagemid containing a DNAzyme expression system regulated by two promoters. One of these promoters, pA1, promotes constitutive expression of Moloney murine leukemia virus reverse transcriptase (MoMuLV-RT). The other promoter, plac, regulates transcription of the RNA substrate from which MoMuLV-RT produces the DNAzyme by reverse transcription. The ftsZ DNAzyme was used to validate this expression system in the phagemid, named pDESCP. ftsZ DNAzyme expression altered the morphological pattern of Escherichia coli from a bacillary to filamentous form. In E. coli FtsZ is the primary component of the cell division apparatus, forming a structure known as Z-ring, which is the place of division. It is suggested that the DNAzyme ftsZ is decreasing the translation of this protein. Delivery of pDESCP into F+ strain of E. coli cells, using VCSM13, and the possible insertion of other DNAzymes into the cassette makes this phagemid an important prototype for phage therapy.


1998 ◽  
Vol 64 (3) ◽  
pp. 1163-1165 ◽  
Author(s):  
Georges Feller ◽  
Olivier Le Bussy ◽  
Charles Gerday

ABSTRACT α-Amylase from the antarctic psychrophile Alteromonas haloplanktis is synthesized at 0 ± 2°C by the wild strain. This heat-labile α-amylase folds correctly when overexpressed in Escherichia coli, providing the culture temperature is sufficiently low to avoid irreversible denaturation. In the described expression system, a compromise between enzyme stability and E. coli growth rate is reached at 18°C.


2014 ◽  
Vol 3 (3) ◽  
pp. 1 ◽  
Author(s):  
Yuanshan Yu ◽  
Yujuan Xu ◽  
Jijun Wu ◽  
Gengsheng Xiao ◽  
Jing Wen ◽  
...  

<p>Inactivation of Gram-negative <em>Escherichia coli</em> and Gram-positive <em>Staphyloccocus aureus</em> in litchi juice by DMDC combined with nisin was individually investigated. A 1.66 log cycles reduction of<em> E. coli </em>and 2.03 log cycles reduction of <em>S. aureus </em>in litchi juice (pH 4.5) added without nisin was achieved as exposed to 150 mg/l DMDC at 30 °C for 1 h, and the inactivation rate of <em>E. coli </em>and <em>S. aureus</em> during initial 1 h was far greater than during the remaining 5 h. As exposed to 150 mg/l DMDC at 30 °C for 1 h, the inactivation of <em>E. coli</em> and <em>S. aureus</em> in the litchi juice showed a trend toward increase with increasing of nisin addition level in the range from 0 to 200 IU/ml. Moreover, DMDC and nisin exhibited a synergistic effect on the inactivation of <em>E. coli</em> and <em>S. aureus</em> in litchi juice, and the inactivation of<em> E. coli</em> and <em>S. aureus</em> in the litchi juice also depends on the temperature of litchi juice, pH value of litchi juice and DMDC concentration when treated with DMDC and nisin. In addition, <em>E. coli</em> showed higher resistance to nisin as comparing with <em>S. aureus</em>. After <em>E. coli</em> and <em>S. aureus</em> in the litchi juice of pH 4.0 were individually treated with 150 mg/l DMDC combined with 200 IU/ml nisin at 30 °C for 1 h, a complete inactivation of <em>S. aureus</em> (6.59 log cycles) was achieved, but only 3.52 log cycles reduction of <em>E. coli</em> was observed.</p>


2006 ◽  
Vol 55 (9) ◽  
pp. 1265-1270 ◽  
Author(s):  
H. Zhu ◽  
C. A. Hart ◽  
D. Sales ◽  
N. B. Roberts

The susceptibility of Escherichia coli and Helicobacter pylori to pH and the effect of pepsin-mediated proteolysis were investigated. This was to establish the relative importance of their bacterial killing properties in gastric juice. Solutions in the pH range 1.5–7.4 with or without pig pepsin A were used, together with seven gastric juice samples obtained from patients undergoing routine gastric collection. Escherichia coli C690 (a capsulate strain), E. coli K-12 (a rough mutant) and Helicobacter pylori E5 were selected as the test organisms. Suspensions of bacteria (1×106 E. coli ml−1 and 1×108 H. pylori ml−1) were pre-incubated with test solutions at 37 °C for up to 2 h, and then cultured to establish the effect on subsequent growth. Survival of bacteria was diminished at pHs of less than 3.5, whereas killing required a pH of less than 2.5. Pre-incubation with pig pepsin at 0.5, 1.0 and 2.0 mg ml−1 at pH 3.5 reduced viable counts by 100 % for E. coli 690 and E. coli K-12 after 100 min incubation. With H. pylori, the viable counts decreased to 50 % of the control after 20 min incubation in 1 mg pepsin ml−1 at pH 2.5, 3.0 and 3.5. The gastric juices showed bactericidal activity at pH 3.5, and the rate of killing was juice dependent, with complete death of E. coli 690 occurring between 5 and 40 min post-incubation. Thus, killing of E. coli and H. pylori occurs optimally at pHs of less than 2.5. At pH 3.5, little effect is observed, whereas addition of pepsin alone or in gastric juice causes a marked increase in bacterial susceptibility, suggesting an important role for proteolysis in the killing of bacteria.


1971 ◽  
Vol 17 (5) ◽  
pp. 689-697 ◽  
Author(s):  
S. F. Crothers ◽  
J. Robinson

Bdellovibrio bacteriovorus strain 6-5-S completed a typical infection cycle when incubated with E. coli ML 35 (lac i−z+y−) in 0.025 M Hepes buffer, pH 7.8, supplemented with 0.002 M CaCl2∙2H2O. Growth of this strain of B. bacteriovorus was optimal over the range of pH 7.5–8.5. No growth occurred at pH 6.5. The broad pH range may occur because a buffer per se is not required for growth and multiplication. The parasite failed to multiply in a two-membered culture unsupplemented with Ca2+ or Mg2+.Growth and multiplication of B. bacteriovorus in a two-membered culture were assessed by various parameters, including decrease in absorbance at 520 mμ, and release of materials absorbing at 260 mμ, and at 280 mμ. The onset of lysis of the host cell was accompanied by an increase in the release of materials absorbing at 260 mμ and at 280 mμ. The ratio of the absorbance of these materials at 280 and 260 mμ increased at the same time, from which it may be inferred that probably amino acids or proteins were being released.No β-galactosidase could be detected in the culture fluid of the two-membered culture. The infected E. coli cells were more permeable than uninfected cells to o-nitrophenyl-β-D-galactoside, and to the fluorescent dye 8-aniIino-1-naphthalenesulfonic acid.


2003 ◽  
Vol 50 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Anna-Maria Ochocka ◽  
Marzena Czyzewska ◽  
Tadeusz Pawełczyk

In this report we describe cloning and expression of human Rho GTPase activating protein (ARHGAP6) isoform 4 in Escherichia coli cells as a fusion protein with 6xHis. We cloned the ARHGAP6 cDNA into the bacterial expression vector pPROEX-1. Induction of the 6xHis-ARHGAP6 protein in BL21(DE3) and DH5alpha cells caused lysis of the cells irrespective of the kind of culture medium used. Successful expression of the fusion protein was obtained in the MC4100Deltaibp mutant strain lacking the small heat-shock proteins IbpA and IbpB. Reasonable yield was obtained when the cells were cultured in Terrific Broth + 1% glucose medium at 22 degrees C for 16 h. The optimal cell density for expression of soluble 6xHis-ARHGAP6 protein was at A(600) about 0.5. Under these conditions over 90% of the fusion protein was present in a soluble form. The 6xHis-ARHGAP6 protein was purified to near homogeneity by a two step procedure comprising chromatography on Ni-nitrilotriacetate and cation exchange columns. The expression system and purification procedure employed made it possible to obtain 1-2 mg of pure 6xHis-ARHGAP6 protein from 300 ml (1.5 g of cells) of E. coli culture.


Sign in / Sign up

Export Citation Format

Share Document