Expression of Psychrophilic Genes in Mesophilic Hosts: Assessment of the Folding State of a Recombinant α-Amylase

1998 ◽  
Vol 64 (3) ◽  
pp. 1163-1165 ◽  
Author(s):  
Georges Feller ◽  
Olivier Le Bussy ◽  
Charles Gerday

ABSTRACT α-Amylase from the antarctic psychrophile Alteromonas haloplanktis is synthesized at 0 ± 2°C by the wild strain. This heat-labile α-amylase folds correctly when overexpressed in Escherichia coli, providing the culture temperature is sufficiently low to avoid irreversible denaturation. In the described expression system, a compromise between enzyme stability and E. coli growth rate is reached at 18°C.

2018 ◽  
Vol 8 (2) ◽  
pp. 354-364
Author(s):  
A. N. Irkitova ◽  
A. V. Grebenshchikova ◽  
A. V. Matsyura

<p>An important link in solving the problem of healthy food is the intensification of the livestock, poultry and fish farming, which is possible only in the adoption and rigorous implementation of the concept of rational feeding of animals. In the implementation of this concept required is the application of probiotic preparations. Currently, there is an increased interest in spore probiotics. In many ways, this can be explained by the fact that they use no vegetative forms of the bacilli and their spores. This property provides spore probiotics a number of advantages: they are not whimsical, easily could be selected, cultivated, and dried. Moreover, they are resistant to various factors and could remain viable during a long period. One of the most famous spore microorganisms, which are widely used in agriculture, is <em>Bacillus subtilis</em>. Among the requirements imposed to probiotic microorganisms is mandatory – antagonistic activity to pathogenic and conditional-pathogenic microflora. The article presents the results of the analysis of antagonistic activity of collection strains of <em>B. subtilis</em>, and strains isolated from commercial preparations. We studied the antagonistic activity on agar and liquid nutrient medias to trigger different antagonism mechanisms of <em>B. subtilis</em>. On agar media, we applied three diffusion methods: perpendicular bands, agar blocks, agar wells. We also applied the method of co-incubating the test culture (<em>Escherichia coli</em>) and the antagonist (or its supernatant) in the nutrient broth. Our results demonstrated that all our explored strains of <em>B. subtilis</em> have antimicrobial activity against a wild strain of <em>E. coli</em>, but to varying degrees. We identified strains of <em>B. subtilis</em> with the highest antagonistic effect that can be recommended for inclusion in microbial preparations for agriculture.</p><p><em><br /></em><em></em></p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


2010 ◽  
Vol 5 (6) ◽  
pp. 827-830
Author(s):  
Georgi Slavchev ◽  
Nadya Markova

AbstractUropathogenic strains of E. coli isolated from urine of patients with urinary tract infections were tested for antibiotic sensitivity using bio-Merieux kits and ATB-UR 5 expression system. The virulence of strains was evaluated by serum bactericidal assay, macrophage “killing” and bacterial adhesive tests. Survival capability of strains was assessed under starvation in saline. The results showed that quinolone-resistant uropathogenic strains of E. coli exhibit significantly reduced adhesive potential but relatively high resistance to serum and macrophage bactericidity. In contrast to laboratory strains, the quinolone-resistant uropathogenic clinical isolate demonstrated increased viability during starvation in saline. Our study suggests that quinolone-resistant uropathogenic strains are highly adaptable clones of E. coli, which can exhibit compensatory viability potential under unfavorable conditions. The clinical occurrence of such phenotypes is likely to contribute to the survival, persistence and spread strategy of resistant bacteria.


2006 ◽  
Vol 188 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
Paul W. King ◽  
Matthew C. Posewitz ◽  
Maria L. Ghirardi ◽  
Michael Seibert

ABSTRACT Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.


2021 ◽  
Vol 2 (2) ◽  
pp. 19-25
Author(s):  
Hugo V. C. Oliveira ◽  
Spartaco Astolfi-Filho ◽  
Edmar V. Andrade

Antisense oligonucleotides exhibit high potential for use as therapeutic agents. '10-23' DNAzymes are antisense molecules with a high chemical stability and catalytic efficiency. In the present study, we developed a phagemid containing a DNAzyme expression system regulated by two promoters. One of these promoters, pA1, promotes constitutive expression of Moloney murine leukemia virus reverse transcriptase (MoMuLV-RT). The other promoter, plac, regulates transcription of the RNA substrate from which MoMuLV-RT produces the DNAzyme by reverse transcription. The ftsZ DNAzyme was used to validate this expression system in the phagemid, named pDESCP. ftsZ DNAzyme expression altered the morphological pattern of Escherichia coli from a bacillary to filamentous form. In E. coli FtsZ is the primary component of the cell division apparatus, forming a structure known as Z-ring, which is the place of division. It is suggested that the DNAzyme ftsZ is decreasing the translation of this protein. Delivery of pDESCP into F+ strain of E. coli cells, using VCSM13, and the possible insertion of other DNAzymes into the cassette makes this phagemid an important prototype for phage therapy.


1989 ◽  
Vol 257 (3) ◽  
pp. 865-873 ◽  
Author(s):  
A Zohair ◽  
S Chesne ◽  
R H Wade ◽  
M G Colomb

The heptose-less mutant of Escherichia coli, D31m4, bound complement subcomponent C1q and its collagen-like fragments (C1qCLF) with Ka values of 1.4 x 10(8) and 2.0 x 10(8) M-1 respectively. This binding was suppressed by chemical modification of C1q and C1qCLF using diethyl pyrocarbonate (DEPC). To investigate the role of lipopolysaccharides (LPS) in this binding, biosynthetically labelled [14C]LPS were purified from E. coli D31m4 and incorporated into liposomes prepared from phosphatidylcholine (PC) and phosphatidylethanolamine (PE) [PC/PE/LPS, 2:2:1, by wt.]. Binding of C1q or its collagen-like fragments to the liposomes was estimated via a flotation test. These liposomes bound C1q and C1qCLF with Ka values of 8.0 x 10(7) and 2.0 x 10(7) M-1; this binding was totally inhibited after chemical modification of C1q and C1qCLF by DEPC. Liposomes containing LPS purified from the wild-strain E. coli K-12 S also bound C1q and C1qCLF, whereas direct binding of C1q or C1qCLF to the bacteria was negligible. Diamines at concentrations which dissociate C1 into C1q and (C1r, C1s)2, strongly inhibited the interaction of C1q or C1qCLF with LPS. Removal of 3-deoxy-D-manno-octulosonic acid (2-keto-3-deoxyoctonic acid; KDO) from E. coli D31m4 LPS decreases the binding of C1qCLF to the bacteria by 65%. When this purified and modified LPS was incorporated into liposomes, the C1qCLF binding was completely abolished. These results show: (i) the essential role of the collagen-like moiety and probably its histidine residues in the interaction between C1q and the mutant D31m4; (ii) the contribution of LPS, particularly the anionic charges of KDO, to this interaction.


2015 ◽  
Vol 78 (2) ◽  
pp. 264-272 ◽  
Author(s):  
CLAUDIA NARVÁEZ-BRAVO ◽  
ALEJANDRO ECHEVERRY ◽  
MARKUS F. MILLER ◽  
ARGENIS RODAS-GONZÁLEZ ◽  
M. TODD BRASHEARS ◽  
...  

The objective of the study was to characterize virulence genes and subtype Escherichia coli O157:H7 and O157:H(−) isolates obtained from a vertically integrated feedlot slaughter plant in Mexico. A total of 1,695 samples were collected from feedlots, holding pens, colon contents, hides, and carcasses. E. coli O157:H7 detection and confirmation was carried out using conventional microbiology techniques, immunomagnetic separation, latex agglutination, and the BAX system. A total of 97 E. coli O157 strains were recovered and screened for key virulence and metabolic genes using multiplex and conventional PCR. Eighty-eight (91.72%) of the strains carried stx2, eae, and ehxA genes. Ten isolates (8.25%) were atypical sorbitol-fermenting strains, and nine were negative for the flicH7 gene and lacked eae, stx1, stx2, and ehxA. One sorbitol-positive strain carried stx2, eae, tir, toxB, and iha genes but was negative for stx1 and ehxA. Pulsed-field gel electrophoresis (PFGE) analysis yielded 49 different PFGE subtypes, showing a high genetic diversity; however, the majority of the typical isolates were closely related (80 to 90% cutoff). Atypical O157 isolates were not closely related within them or to typical E. coli O157:H7 isolates. Identical PFGE subtypes were found in samples obtained from colon contents, feedlots, holding pens, and carcasses. Isolation of a sorbitol-fermenting E. coli O157 positive for a number of virulence genes is a novel finding in Mexico. These data showed that genetically similar strains of E. coli O157:H7 can be found at various stages of beef production and highlights the importance of preventing cross-contamination at the pre- and postharvest stages of processing.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xinyu Zhang ◽  
Shupei Yu ◽  
Darong Cheng ◽  
Yu Feng ◽  
Yuefei Yang ◽  
...  

To develop an attenuated vaccine candidate against K88ac enterotoxigenic Escherichia coli (ETEC), a novel Escherichia coli (E. coli) K88ac LT(S63K)ΔSTb with LT(S63K) mutation and ST1 deletion was generated using site mutagenesis and λ-Red homologous recombination based on wild paternal ETEC strain C83902. E. coli K88ac LT(S63K)ΔSTb showed very similar fimbriae expression and growth kinetics to the wild strain C83902, but it was significantly attenuated according to the results of a rabbit ligated ileal loop assay and mouse infection study. Oral inoculation with E. coli K88ac LT(S63K)ΔSTb stimulated the mucosa immune response and induced the secretion of IgA to K88ac in the intestines in mice. A challenge experiment revealed that the attenuated strain provided efficient protection against C83902 in the following 7 days and at the 24th day post-inoculation, suggesting that the attenuated isolate could act as an ecological protectant and vaccine in preventing K88ac ETEC.


2003 ◽  
Vol 50 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Anna-Maria Ochocka ◽  
Marzena Czyzewska ◽  
Tadeusz Pawełczyk

In this report we describe cloning and expression of human Rho GTPase activating protein (ARHGAP6) isoform 4 in Escherichia coli cells as a fusion protein with 6xHis. We cloned the ARHGAP6 cDNA into the bacterial expression vector pPROEX-1. Induction of the 6xHis-ARHGAP6 protein in BL21(DE3) and DH5alpha cells caused lysis of the cells irrespective of the kind of culture medium used. Successful expression of the fusion protein was obtained in the MC4100Deltaibp mutant strain lacking the small heat-shock proteins IbpA and IbpB. Reasonable yield was obtained when the cells were cultured in Terrific Broth + 1% glucose medium at 22 degrees C for 16 h. The optimal cell density for expression of soluble 6xHis-ARHGAP6 protein was at A(600) about 0.5. Under these conditions over 90% of the fusion protein was present in a soluble form. The 6xHis-ARHGAP6 protein was purified to near homogeneity by a two step procedure comprising chromatography on Ni-nitrilotriacetate and cation exchange columns. The expression system and purification procedure employed made it possible to obtain 1-2 mg of pure 6xHis-ARHGAP6 protein from 300 ml (1.5 g of cells) of E. coli culture.


Author(s):  
Amir Hossein Momen ◽  
Naser Harzandi ◽  
Azam Haddadi ◽  
Bijan Bambai

Abstract Background Increasing the expression rate of recombinant mammalian hormones in Escherichia coli by combining efficient promoters and signal sequences is a never ending process. A self-induced promoter will have some beneficial gains compared to the classical T7 promoter or its variants with isopropyl β-D-1-thiogalactopyranoside (IPTG) as the inducer. Obesity is the prime suspect in widespread frequency of diabetes type II and cardiovascular diseases worldwide. YY (tyrosine-tyrosine) peptide is a local acting hormone, controlling appetite. Excitingly, it was has been shown that a truncated version of the YY peptide, YY(3-36) peptide, has potential as a worthy biopharmaceutical agent in the fight against obesity. Materials and methods To develop an economical expression system for the large scale production of the peptide in Gram-negative bacteria, we introduced a promoter sequence upstream of a chimeric gene for the extracellular expression of this peptide with the assistance of a signal sequence of asparaginase II from E. coli. This system has the advantage of producing a complete sequence of a truncated YY peptide, YY(3-36), without any extra tags that would require further removal with the assistance of expensive specific proteases and reduced the downstream steps, significantly. Results Recombinant production of YY(3-36) peptide under a self-induced promoter proves the efficacy of the asparaginase II signal sequence as a communicator of foreign peptides and proteins into the extracellular space of E. coli. Conclusions The application of fusion protein expression of biopharmaceuticals, especially mammalian hormones, in prokaryotic systems with the help of native signal sequences makes some common tags with expensive proteases for the removal of the attached protein Tag redundant.


Sign in / Sign up

Export Citation Format

Share Document